首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Neonatal transection results in a marked reduction of the number of trigeminal (V) ganglion cells that contribute axons to the regenerate infraorbital nerve (ION; Jacquin and Rhoades, 1985; Chiaia et al., 1987). Such lesions also produce a profound deafferentation of the V brain stem complex that appears to spare the innervation of layers I and II of subnucleus caudalis (SpC) by subtance-P-positive (SP-positive) primary afferents (Jacquin and Rhoades, 1985; Rhoades et al., 1988). In the present study, we combined retrograde tracing with immunocytochemistry to determine whether neonatal transection of the ION alters the percentage of SP-positive V ganglion cells that contribute axons to this V branch upon regeneration. In V ganglia ipsilateral to the intact ION (n = 8), 11.6% ± 3.2% of the cells labeled after application of true blue (TB) to the ION were also SP-positive. In ganglia ipsilateral to the neonatally damaged nerve (n = 8), 18.6% ± 4.7% of the cells labeled after application of TB to the regenerate ION were also SP-positive (p < 0.001). We also compared the SP content of intact ganglia (n = 10) with that of ganglia ipsilateral to the damaged nerve (n = 10) by means of radioimmunoassay. The normal V ganglia contained (mean ± SD) 3496 ± 774 pg SP/mg protein. The value for the ganglia ipsilateral to the damaged nerve was 5533 ± 1746 pg SP/mg protein (p < 0.01). There was no significant difference between SP levels on the control and partially deafferented sides of the brain stem in neonatally nerve-damaged adult rats.

In one additional experiment, we injected TB into both vibrissa pads of seven rats on the day of birth prior to transection of the ION. After an 8-hr delay, the nerve on one side was then cut and allowed to regenerate, and both V ganglia were then processed for immunocytochemistry. On the nerve-damaged side, 25.8% of the TB-labeled cells were SP-positive. The value for the intact side was 12.0% (p < 0.00001). This result demonstrated that the lesion-induced change in the percentage of SP-positive ION cells was not1. the result of either late-growing axons from SP-positive ganglion cells that may have been missed by our nerve cuts or collateral sprouting into the regenerate ION by undamaged SP-positive ganglion cells.  相似文献   

2.
Two different anatomical techniques were used to obtain evidence that transection of the infraorbital (IO) nerve on the day of birth would result in reorganization of the peripheral projections of the trigeminal nerve. In 14 of 19 neonatally nerve-damaged adult rats, injection of horseradish peroxidase (HRP) directly into the IO nerve, proximal to the point of the neonatal transection, resulted in labeled cells in the ophthalmic-maxillary portion of the ganglion and labeled fibers in mandibular sensory nerves. In an additional 28 neonatally nerve-damaged adult rats, double-labeling techniques were employed to document the reorganization suggested by the HRP tracing experiments. In these experiments, one fluorescent tracer, diamidino yellow (DY), was injected directly into the regenerate IO nerve, proximal to the point of the neonatal transection; a second tracer, true blue (TB), was deposited into peripheral ophthalmic and/ or mandibular fields. These combinations of injections invariably resulted in the demonstration of a small number (46-401) of double-labeled cells that were located in the ophthalmic-maxillary part of the ganglion. Identical combinations of injections in normal adult rats and the intact sides of nerve-damaged animals never produced more than 6 double-labeled cells per ganglion.

In two additional series of experiments, sequential double-labeling techniques were employed to demonstrate that the multiply projecting ganglion cells probably arose in at least two ways: (1) development of non-IO projections by ganglion cells that contributed axons to the IO nerve at the time of the lesion; (2) elaboration of IO axon branches by primary afferent neurons that had non-IO projections at the time of the lesion. A final two-stage double-labeling experiment demonstrated that approximately 75% of the ganglion cells that projected to the whisker pad at birth, and survived transection of the IO nerve on the first postnatal day, regenerated axons into this trigeminal branch.  相似文献   

3.
Summary The subcellular distribution of noradrenaline (NA), neuropeptide Y (NPY), Met and Leu-enkephalin (ENK), substance P (SP), somatostatin (SOM), and vasoactive intestinal polypeptide (VIP) was investigated in homogenates of bovine splenic nerve. The distribution of noradrenergic peptide-containing nerves in the bovine celiac ganglion, splenic nerve and terminal areas in spleen was studied by indirect immunofluorescence histochemistry using antisera to tyrosine hydroxylase (TH), dopamine--hydroxylase (DBH), NPY, enkephalin peptides, SP, SOM, VIP and peptide HI (PHI).After density gradient centrifugation, high levels of NPY and ENK-like immunoreactivity (LI) were found in high-density gradient fractions, coinciding with the main NA peak. SP, SOM and VIP were found in fractions with a lower density, VIP being also enriched in a heavy fraction; the latter three peptides were present in low concentrations.Immunohistochemistry revealed that staining for NPYLI and ENK-LI partly overlapped that for TH and DBH in celiac ganglia, splenic nerve axons and terminal areas of spleen. Almost all principal ganglion cells were TH- and DBH-immunoreactive. Many were also NPY-immunoreactive, whereas a smaller number were ENK-positive. In the celiac ganglion patches of dense SP-positive networks and some VIP/PHI- and ENK-immunoreactive fibers were seen around cell bodies.The results indicate that NPY and ENK are stored with NA in large dense-cored vesicles in unmyelinated axons of bovine splenic nerve. SP, SOM and VIP appear in different organelles in axon populations separate from sympathetic noradrenergic nerves.  相似文献   

4.
Previous experiments from this laboratory have indicated that transection of the infraorbital nerve (ION, the trigeminal \[V] branch that supplies the mystacial vibrissae follicles) at birth and in adulthood has markedly different effects on galanin immunoreactivity in the V brainstem complex. Adult nerve transection increases galanin immunoreactivity in the superficial layers of V subnucleus caudalis (SpC) only, while neonatal nerve transection results in increased galanin expression in vibrissae-related primary afferents throughout the V brainstem complex. The present study describes the distribution of binding sites for this peptide in the mature and developing V ganglion and brainstem complex and determines the effects of neonatal and adult ION damage and the associated changes in galanin levels upon their distribution and density. Galanin binding sites are densely distributed in all V brainstem subnuclei and are particularly dense in V subnucleus interpolaris and the superficial layers of SpC. They are present at birth (P-0) and their distribution is similar to that in adult animals. Transection of the ION in adulthood and examination of brainstem 7 days later indicated marked reductions in the density of galanin binding sites in the V brainstem complex. With the exception of the superficial laminae of SpC, the same reduction in density remained apparent in rats that survived 45 days after nerve cuts. Transection of the ION on P-0 resulted in no change in the density of galanin binding sites in the brainstem after either 7 or 60 days survival. These results indicate that densely distributed galanin binding sites are present in the V brainstem complex of both neonatal and adult rats, that they are located in regions not innervated by galanin-positive axons, and that their density is not significantly influenced by large lesion-induced changes in the primary afferent content of their natural ligand.  相似文献   

5.
Summary The origin of nerve fibers to the superficial temporal artery of the rat was studied by retrograde tracing with the fluorescent dye True Blue (TB). Application of TB to the rat superficial temporal artery labeled perikarya in the superior cervical ganglion, the otic ganglion, the sphenopalatine ganglion, the jugular-nodose ganglionic complex, and the trigeminal ganglion. The labeled perikarya were located in ipsilateral ganglia; a few neuronal somata were, in addition, seen in contralateral ganglia. Judging from the number of labeled nerve cell bodies the majority of fibers contributing to the perivascular innervation originate from the superior cervical, sphenopalatine and trigeminal ganglia. A moderate labeling was seen in the otic ganglion, whereas only few perikarya were labeled in the jugular-nodose ganglionic complex. Furthermore, TB-labeled perikarya were examined for the presence of neuropeptides. In the superior cervical ganglion, all TB-labeled nerve cell bodies contained neuropeptide Y. In the sphenopalatine and otic ganglia, the majority of the labeled perikarya were endowed with vasoactive intestinal polypeptide. In the trigeminal ganglion, the majority of the TB-labeled nerve cell bodies displayed calcitonin gene-related peptide, while a small population of the TB-labeled neuronal elements contained, in addition, substance P. In conclusion, these findings indicate that the majority of peptide-containing nerve fibers to the superficial temporal artery originate in ipsilateral cranial ganglia; a few fibers, however, may originate in contralateral ganglia.  相似文献   

6.
The present study tested the hypothesis that the trigeminal (V) primary afferent projection to the contralateral dorsal horn originates in midline hairy skin. A prior study (Jacquin et al., 1990) showed that this crossed projection is heaviest to ophthalmic regions of medullary and cervical dorsal horns, and that it does not arise from V ganglion cells that innervate cornea, nasal mucosa, or cerebral dura mater. Here, retrograde double-labeling methods were used to show that many ophthalmic ganglion cells that innervate midline hairy skin via the supraorbital nerve project to the contralateral medullary and upper cervical dorsal horns. Diamidino yellow injections into the right dorsal horn labeled an average of 104 cells in the left V ganglion. Of these contralaterally projecting ganglion cells, an average of 45% were also labeled by horseradish peroxidase (HRP) injections into the left supraorbital nerve, and 25% were also labeled by HRP injections into the midline opthalmic hairy skin. However, only 2% were labeled by HRP injections restricted to left supraorbital vibrissae follicle nerves. Almost all of the double-labeled cells were located in the dorsal one-half of the V ganglion, and they did not differ in size from single-labeled cells.

On the basis of these and prior data, we conclude that a high percentage of contralaterally projecting V ganglion cells originate in midline hairy skin. It is also likely that the contralaterally projecting V ganglion cells serve a low-threshold mechanoreceptive function, given the relatively large ganglion cells and axons giving rise to this pathway and their central terminations in dorsal horn laminae III-V.  相似文献   

7.
This study examined the role of the brain and peripheral connections with the target organs in the appearance of neurosecretary material within the dorsal neural sheath of the ventral ganglion of the fly S. bullata. Specifically, the accumulation of the neuropeptide FMRFamide (the neurosecretary material) was examined by immunocytochemistry. Immunoreactions were performed on: (1) a normal intact ventral ganglion, (2) an isolated ventral ganglion that was cultured in vivo, and (3) a ventral ganglion that was isolated by transection from the brain, but retained its peripheral nerve connections. The results demonstrate that (a) the neurons of the ganglia survive and exhibit FMRFamide immune reaction independent of their peripheral connections, and (b) the accumulation of neuropeptide in the dorsal neural sheath is controlled by intact peripheral nerve connections with the ganglion. It is suggested that in the absence of their peripheral connections, the axons of FMRFamide immunoreactive neurons fail to invade the neural sheath resulting in the accumulation of neurosecretary material.  相似文献   

8.
In adult crayfish, Procambarus clarkii, motoneurons to a denervated abdominal superficial flexor muscle regenerate long-lasting and highly specific synaptic connections as seen from recordings of excitatory postsynaptic potentials, even when they arise from the ganglion of another crayfish. To confirm the morphological origins of these physiological connections we examined the fine structure of the allotransplanted tissue that consisted of the third abdominal ganglion and the nerve to the superficial flexor muscle (the fourth ganglion and the connecting ventral nerve cord were also included). Although there is considerable degeneration, the allotransplanted ganglia display intact areas of axon tracts, neuropil, and somata. Thus in both short (6–8 weeks) and long (24–30 weeks) term transplants approximately 20 healthy somata are present and this is more than the five axons regenerated to the host muscle. The principal neurite and dendrites of these somata receive both excitatory and inhibitory synaptic inputs, and these types of synaptic contacts also occur among the dendritic profiles of the neuropil. Axon tracts in the allotransplanted ganglia and ventral nerve cord consist largely of small diameter axons; most of the large axons including the medial and lateral giant axons are lost. The transplanted ganglia have many blood vessels and blood lacunae ensuring long-term survival. The transplanted superficial flexor nerve regenerates from the ventral to the dorsal surface of the muscle where it has five axons, each consisting of many profiles rather than a single profile. This indicates sprouting of the individual axons and accounts for the enlarged size of the regenerated nerve. The regenerated axons give rise to normal-looking synaptic terminals with well-defined synaptic contacts and presynaptic dense bars or active zones. Some of these synaptic terminals lie in close proximity to degenerating terminals, suggesting that they may inhabit old sites and in this way ensure target specificity. The presence of intact somata, neuropil, and axon tracts are factors that would contribute to the spontaneous firing of the transplanted motoneurons. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The present study tested the hypothesis that the trigeminal (V) primary afferent projection to the contralateral dorsal horn originates in midline hairy skin. A prior study (Jacquin et al., 1990) showed that this crossed projection is heaviest to ophthalmic regions of medullary and cervical dorsal horns, and that it does not arise from V ganglion cells that innervate cornea, nasal mucosa, or cerebral dura mater. Here, retrograde double-labeling methods were used to show that many ophthalmic ganglion cells that innervate midline hairy skin via the supraorbital nerve project to the contralateral medullary and upper cervical dorsal horns. Diamidino yellow injections into the right dorsal horn labeled an average of 104 cells in the left V ganglion. Of these contralaterally projecting ganglion cells, an average of 45% were also labeled by horseradish peroxidase (HRP) injections into the left supraorbital nerve, and 25% were also labeled by HRP injections into the midline opthalmic hairy skin. However, only 2% were labeled by HRP injections restricted to left supraorbital vibrissae follicle nerves. Almost all of the double-labeled cells were located in the dorsal one-half of the V ganglion, and they did not differ in size from single-labeled cells. On the basis of these and prior data, we conclude that a high percentage of contralaterally projecting V ganglion cells originate in midline hairy skin. It is also likely that the contralaterally projecting V ganglion cells serve a low-threshold mechanoreceptive function, given the relatively large ganglion cells and axons giving rise to this pathway and their central terminations in dorsal horn laminae III-V.  相似文献   

10.
In the pedal ganglia ofClione limacina the growth of neurites is traced in motoneurons after transection of the wing nerve and in interneurons after transection of the pedal commissure. Neurons were stained intracellularly with Lucifer yellow. In the motoneurons the neurites growing from the transected end of the axon and from the neuron soma spread to all nerve trunks departing from the ipsi- and contralateral ganglia. For nerve transection in the intact mollusk, wing movements were restored 10 days after the operation. In the interneurons the growing neurites branched within the pedal ganglion or spread to the cerebral ganglia, but they never reached the periphery.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 449–455, July–August, 1985.  相似文献   

11.
The ability of neurons in the abdominal ganglion of Aplysia to regenerate their axons following branchial nerve crush was studied using retrograde staining and intracellular dye injection. The duration of the gill withdrawal reflex (GWR) was measured prior to and following nerve crush. Three days after crushing the nerve, the duration of the gill withdrawal reflex was reduced to 20% of control levels. There was rapid recovery 19 days after crushing the branchial nerve. The GWR duration returned to control levels by postlesion days 25–27. Some of the behavioral recovery can be attributed to axonal regeneration. Regeneration, as evidenced by retrograde staining, was first observed by postlesion day 15. The number of stained neurons in ganglia with crushes increased until postlesion day 33. The number of stained neurons in experimental animals was always less than that of controls (67 ± 9% at postlesion day 56). More axonal regeneration was seen in the hemiganglion ipsilateral to the branchial nerve. Regeneration after 32 days postlesion was 60 ± 5% of controls in the ipsilateral hemiganglion, as opposed to 29 ± 6% in the contralateral hemiganglion. Regeneration of individual neurons was also demonstrated. Identified neuron R2 was shown by intracellular dye injection and electrical stimulation of antidromic action potentials to have an axon in the branchial nerve in all ganglia allowed to regenerate for longer than 32 days. These results indicate that in Aplysia, despite behavioral recovery, complete axonal regeneration does not occur in a large segment of the neurons in the adult central nervous system. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 160–172, 1998  相似文献   

12.
The aim of this study is to investigate a fine structure of the retino-optic nerve junction in the chicken. We especially focused on the myelin sheaths and astrocytes in the intraocular optic nerve (ION) and its adjoining parts. A part of the axons of retinal nerve fiber layer (NFL) were myelinated. Ganglion cell axons were ensheathed by loose myelin in the NFL and by a compact one in the ION and optic nerve (ON). Myelin structure changed from loose type to a compact one within the very narrow NFL-ION junction. Loose myelin forming cells are dark type of oligodendrocytes in the retina. From the most peripheral ON to the choroidal part of ION, astrocytes contained abundant microtubules. The optic nerve around the lamina cribrosa is exposed to mechanical force during eye movement. It is suggested that these microtubules may perform the cytoskeletal function. Astrocytes in the retinal part of ION had longer processes filled with abundant gliofilaments. They may provide the mechanical support for the ganglion cell axons, which are exposed directly to intraocular pressure. Although astrocytes in the retinal level of ION extended their processes into the retina, their soma was never found in the retina.  相似文献   

13.
The present study investigated: (1) the distribution and chemical coding of primary sensory neurons supplying the vas deferens in juvenile pigs by the use of retrograde tracing combined with double-labelling immunofluorescence, (2) nerve pathways from dorsal root ganglia (DRG) to the vas deferens by means of denervation procedures involving transection of the hypogastric or pelvic nerve combined with a retrograde tracing method, and (3) possible interactions of the substance P (SP)/calcitonin gene-related peptide (CGRP)-immunoreactive varicose nerve fibres on vas deferens projecting neurons (VDPN) in the anterior pelvic ganglion (APG). The vast majority of VDPN were found mainly in the lumbar L2, L3 and sacral S2, S3 pairs of DRG and showed a clear ipsilaterally organized projection pattern. Immunohistochemistry revealed that most of these neurons contained SP and/or CGRP, occasionally coexpressed with galanin. Interestingly, pronounced differences in the expression of SP and/or CGRP were observed between the lumbar and sacral VDPN in that most of the lumbar but less than half of the sacral neurons stained for these peptides. Denervation experiments showed that the neurons located within the lumbar DRG project through the ipsilateral hypogastric nerve, whereas those found within the sacral DRG send their processes through the ipsilateral and contralateral pelvic nerve. In the nerve-lesioned animals, especially in those with the hypogastric nerve cut, a dramatic reduction in the number of SP and/or CGRP-containing nerve terminals surrounding the efferent VDPN within the APG was observed. This study has disclosed the distribution and, for the first time, chemical coding and nerve pathways of vas deferens-projecting primary sensory neurons in a mammalian species, the pig. The results obtained also provide some novel information about the possible morphological and functional relationship between vas deferens-projecting primary sensory and pelvic efferent nerve cells.  相似文献   

14.
The mature peripheral nervous system has the ability to survive and to regenerate its axons following axonal injury. After nerve injury, the distal axonal and myelin segment undergoes dissolution and absorption by the surrounding cellular environment, a process called Wallerian degeneration. Using cDNA microarrays, we isolated FLRT3 as one of the up-regulated genes expressed in the distal segment of the sciatic nerve 7 days after transection relative to those of the intact sciatic nerve. FLRT3 is a putative type I transmembrane protein containing 10 leucine-rich repeats, a fibronectin type III domain, and an intracellular tail. The neurons plated on CHO cells expressing FLRT3 extended significantly longer neurites than those plated on wild-type CHO cells, demonstrating that FLRT3 promotes neurite outgrowth. FLRT3 mRNA was especially abundant in the basal ganglia, the granular layer of cerebellum, and the hippocampus, except the CA1 region in the adult rat brain. Thus, FLRT3 may contribute to regeneration following axonal injury.  相似文献   

15.
The ontogeny of the neurons exhibiting substance P-like immunoreactivity (SPLI) was examined in the spinal and cranial sensory ganglia of chick and quail embryos. It was shown that in dorsal root ganglia (DRG) virtually all neuronal somas occupying the mediodorsal (MD) region of the ganglia are SPLI-positive while the larger neurons of the lateroventral (LV) area are SPLI-negative. In the cranial nerve ganglia, both types of neurons coexist in the trigeminal ganglion but with a different distribution: small neurons with SPLI are proximal while large neurons without SPLI occupy the maxillomandibular and ophthalmic lobes. The distal ganglia of nerves VII and IX (i.e., geniculate, petrosal) do not show cell bodies with SPLI in the two species considered. A few of them only (about 12%) are found in the nodose (distal ganglion of nerve X). The proximal ganglia of nerves IX and X (i.e., superior-jugular complex) are composed of small neurons which virtually all exhibit SPLI. Chimaeric cranial sensory ganglia were constructed by grafting the quail hind-brain primordium into chick embryos. Revelation of SPLI was combined with acridine orange staining on the same sections in order to ascertain the placodal (chick host) or neural crest (quail donor) origin of the SP-positive neurons in each type of ganglion. We found that all the neurons showing SPLI are derived from the neural crest in the trigeminal and in the superior and jugular ganglia. In the geniculate, petrosal, and nodose all the neurons are derived from the placodal ectoderm. The small number of SPLI-positive cells of the nodose ganglia are not an exception to this rule. Therefore, generally speaking, the sensory neurons of the cranial ganglia that express the SP phenotype are derived from the crest, with the exception of some neurons present in the nodose of both quail and chick embryos and which are of placodal origin. The vast majority of placode-derived neurons do not have amounts of SP that can be detected under the conditions of the present study.  相似文献   

16.
The present study was designed to investigate and to compare the chemical coding of nerve fibres supplying major populations of neurons in the caudal mesenteric (CaMG) and anterior pelvic (APG) ganglion in juvenile male pigs (n=5) using double-labelling immunofluorescence. The co-existence patterns of some biologically active substances including tyrosine hydroxylase (TH) and vesicular acetylcholine transporter (VAChT) as well as vasoactive intestinal polypeptide (VIP), substance P (SP), calcitonin gene-related peptide (CGRP), Leu5-enkephalin (LENK) and serotonin (5-HT) were analysed under a confocal laser scanning microscope. Profound differences in the neurochemical features of the nerve terminals between the ganglia were observed. Moreover, there were also distinct differences in the chemical coding of nerve fibres associated with the particular populations and subpopulations of neurons within the ganglia. In both ganglia, nearly all adrenergic and cholinergic neurons were supplied with VAChT-positive nerve fibres (putative preganglionic fibres). However, in the CaMG, they were more numerous and, in contrast to the APG, many of them also stained for VIP. In the APG, a great number of nerve terminals expressed immunoreactivity to SP and CGRP (putative collaterals of sensory neurons). Interestingly, they densely supplied almost exclusively adrenergic neurons. SP-positive nerve fibres were moderate in number in the CaMG, but, in addition to VAChT-IR nerve terminals, the most numerous populations of nerve fibres in this ganglion were those expressing highly colocalized immunoreactivities to CGRP and LENK, and those which stained for 5-HT (putative processes of enteric neurons). However, these fibres supplied almost exclusively larger, intensely stained for TH and clustered adrenergic neurons. This diversity of the nerve terminals reflects the complexity of nerve circuits involved in the innervation of structures supplied by neurons in the porcine CaMG and APG. It also demonstrates the importance of nerve inputs for the proper function of autonomic neurons and thus their target tissues.  相似文献   

17.
Summary The distribution of substance P (SP) immunofluorescence was investigated in the Gasserian ganglion, ophthalmic nerve and in the anterior segment of the rabbit eye. About one third of the nerve cell bodies in the Gasserian ganglion exhibited SP immunofluorescence, which was also observed in some nerve fibres of the ophthalmic nerve. In the cornea, some SP-positive iris contained numerous nerve fibres with SP immunofluorescence. In the sphincter area such fibres were circular, while the orientation of the SP fibres was radial in the dilator muscle. Both in the iris and in the ciliary body, the largest vessels were surrounded by nerves exhibiting SP immunofluorescence. A few nerve fibres also appeared in the stroma of the ciliary processes.  相似文献   

18.
Developing submandibular, trigeminal and superior cervical ganglia, which provide innervation to the submandibular glands, were studied for substance P (SP)-and neurokinin A (NKA)-immunoreactive (IR) ganglion cells and nerve fibres in rat. These ganglia were examined by using an indirect immunofluorescence technique at daily intervals from the 16th day in utero (i.u.) until birth, and subsequently on the 2nd, 5th, 7th, 12th, 16th, 30th, 42nd postnatal day and in the adult (3 months). In the submandibular ganglion SP- and NKA-IR cells and fibres first appeared in considerable numbers on the 19th day i.u. (in one sample out of five on the 18th day i.u.), when more than 90% of the ganglion cells were immunoreactive to SP and NKA. The number stayed at more than 90% to the 7th postnatal day and then slowly decreased to the levels of adult animals (18% SP, 17% NKA). The first SP- and NKA-IR ganglion cells and fibres appeared in the trigeminal ganglion on the 18th day i.u. when they represented 7% (SP) and 4% (NKA) of the ganglion cells. The number of SP- and NKA-IR cells increased steadily, reaching a maximum at the time of birth when 68% (SP) and 74% (NKA) of the ganglion cells were immunoreactive. Thereafter they began to decrease toward the level of an adult rat (10% SP, 11% NKA). In the superior cervical ganglion only a few SP-and NKA-IR ganglion cells were detected from the 19th day i.u. to the fifth postnatal day. Positive ganglion cells were also occasionally found in the nerve trunks outside the superior cervical ganglion. From the seventh day onwards no SP- or NKA-IR ganglion cells were found. SP-and NKA-IR SIF (small intensively fluorescent) cells were detected from the 16th postnatal day onwards.  相似文献   

19.
Serotonin immunoreactivity of neurons in the gastropod Aplysia californica   总被引:2,自引:0,他引:2  
Serotonergic neurons and axons were mapped in the central ganglia of Aplysia californica using antiserotonin antibody on intact ganglia and on serial sections. Immunoreactive axons and processes were present in all ganglia and nerves, and distinct somata were detected in all ganglia except the buccal and pleural ganglia. The cells stained included known serotonergic neurons: the giant cerebral neurons and the RB cells of the abdominal ganglion. The area of the abdominal ganglion where interneurons are located which produce facilitation during the gill withdrawal reflex was carefully examined for antiserotonin immunoreactive neurons. None were found, but two bilaterally symmetric pairs of immunoreactive axons were identified which descend from the contralateral cerebral or pedal ganglion to abdominal ganglion. Because of the continuous proximity of this pair of axons, they could be recognized and traced into the abdominal ganglion neuropil in each preparation. If serotonin is a facilitating transmitter in the abdominal ganglion, these and other antiserotonin immunoreactive axons in the pleuroabdominal connectives may be implicated in this facilitation.  相似文献   

20.
The pulmonate snail Melampus bidentatus regenerates central nervous tracts following commissurotomy, connective transection, and cerebral ganglion ablation. Our goal was to determine whether or not neural regrowth within the central nervous system restored behaviors disrupted by lesions. One behavior that is disrupted by commissurotomy is retraction of facial structures that are contralateral to a stimulated facial region, a response that normally accompanies the ipsilateral retraction. Tentacle withdrawal on the side contralateral to stimulation reappeared on a timescale that was correlated with growth of a commissural link (8-19 days post-lesion). Electrophysiological recordings from a labial nerve pathway that has a contralateral component similar to the contralateral tentacle response showed that development or strengthening of an alternative pathway could also mediate contralateral responses. Thus, a major conclusion of this study was that both tract regeneration and changes in existing CNS pathways can underlie recovery. The percentage (approx. 75%) of snails that regenerate the cerebral commissure and show behavioral recovery is established early in the period following commissure transection. Behavioral recovery and anatomical evidence of regeneration were also correlated in the other two operations: single cerebral ganglion removal and unilateral cerebropleural and cerebropedal connective transection. We conclude that Melampus is able to regenerate neuronal connectivity that can restore normal behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号