首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A detailed numerical study has been conducted in order to analyse the combined buoyancy effects of thermal and mass diffusion on the turbulent mixed convection tube flows. Numerical results for air-water system are presented under different conditions. A low Reynolds number k-ε turbulent model is used with combined heat and mass transfer analysis in a vertical heated tube. The local heat fluxes, Nusselt and Sherwood numbers are reported to obtain an understanding of the physical phenomena. Predicted results show that a better heat transfer results for a higher gas flow Reynolds number Re, a higher heat flux qw or a lower inlet water flow Γ0. Additionally, the results indicate that the convection of heat by the flowing water film becomes the main mechanism for heat removal from the wall.  相似文献   

2.
A mathematical model of the combustion of a droplet surrounded by hot gas with a uniform free stream motion is made from the numerical solution of conservation equations of heat, mass and momentum in both the carrier and the droplet phases. The gas-phase chemical reaction between the fuel vapour and the oxidizer is assumed to be single-step and irreversible. The phenomenon of ignition is recognised by the sudden rise of temperature in the temperature/time histories at different locations in the carrier phase. To ascertain the process irreversibilities, the instantaneous rate of entropy production and its variation with time have been determined from the simultaneous numerical solution of the entropy conservation equations for both the gas and liquid phases. The relative influences of pertinent input parameters, namely the initial Reynolds number Rei, the ratio of the free stream to initial temperature T and the ambient pressure on (i) the local and average Nusselt numbers, (ii) the life histories of burning fuel drops, and (iii) the entropy generation rate in the process of droplet combustion have been established.  相似文献   

3.
The heat transfer phenomena inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths was investigated numerically in the present work. The heat source is considered as a local heating element of varying length, which is embedded at the bottom wall of the enclosure and maintained at a constant temperature. The air flow enters the channel horizontally at a constant cold temperature and a fixed velocity. The other walls of the enclosure and the channel are kept thermally insulated. The flow is assumed laminar, incompressible, and two‐dimensional, whereas the fluid is considered Newtonian. The results are presented in the form of the contours of velocity, isotherms, and Nusselt numbers profiles for various values of the dimensionless heat source lengths (0.16 ≤ ε ≤ 1). while, both Prandtl and Reynolds numbers are kept constant at (Pr = 0.71) and (Re = 100), respectively. The results indicated that the distribution of the isotherms depends significantly on the length of the heat source. Also, it was noted that both the local and the average Nusselt numbers increase as the local heat source length increases. Moreover, the maximum temperature is located near the heat source location.  相似文献   

4.
Linear stability theory is applied to the problem of Marangoni convection in a rotating horizontal fluid layer subject to a uniform heat flux from below. The fluid layer is bounded from below by a rigid boundary and above by a deformable free surface. We show how the PrTa parameter space is divided into regions in which steady or oscillatory convection is preferred.  相似文献   

5.
The paper deals with the criterion for the onset of surface tension-driven convection in the presence of temperature gradients in a two-layer system comprising a fluid saturated anisotropic porous layer over which lies a layer of fluid. The lower rigid surface is assumed to be insulated to temperature perturbations, while at the upper non-deformable free surface a general thermal condition is invoked. Both the Beavers-Joseph and the Jones conditions have been used at the interface to know their preference and prominence in the study of the problem. The resulting eigenvalue problem is solved exactly and also by regular perturbation technique when both the boundaries are insulating to temperature perturbations. It is found that the depth of the relative layers, mechanical and thermal anisotropy parameters have a profound effect on the stability of the system. Decreasing the mechanical anisotropy parameter and increasing the thermal anisotropy parameter leads to stabilization of the system. Besides, the possibility of control of Marangoni convection by suitable choice of physical parameters is discussed in detail.  相似文献   

6.
The process of evaporation from a meniscus into air is more complicated than in enclosed chambers filled with pure vapor. The vapor pressure at the liquid–gas interface depends on both of the evaporation and the vapor transport in the gas environment. Heat and mass transport from an evaporating meniscus in an open heated V-groove is numerically investigated and the results are compared to experiments. The evaporation is coupled to the vapor transport in the gas domain. Conjugate heat transfer is considered in the solid walls, and the liquid and gas domains. The flow induced in the liquid due to Marangoni effects, as well as natural convection in the gas due to thermal expansivity and vapor concentration gradients are simulated. The calculated evaporation rates are found to agree reasonably well with experimentally measured values. The convection in the gas domain has a significant influence on the overall heat transfer and the wall temperature distribution. The evaporation rate near the contact lines on either end of the meniscus is high. Heat transfer through the thin liquid film near the heated wall is found to be very efficient. A small temperature valley is obtained at the contact line which is consistent with the experimental observation.  相似文献   

7.
The role of a uniform AC electric field and a nonuniform volumetric heat source arising due to an external incident radiation on the onset of Marangoni convection in a horizontal layer of an incompressible dielectric fluid is investigated. The bottom rigid surface is fixed at a constant temperature while the top free surface at which the surface tension acts is considered to be nondeformable and a Robin boundary condition on the perturbation temperature is invoked. The nonuniform internal heating within the fluid layer alters the conduction temperature profile from linear to nonlinear in the vertical coordinate. The linear stability of the quiescent basic solution is studied with respect to normal mode disturbances. The resulting stability eigenvalue problem with variable coefficient is solved numerically using the Galerkin method. The impact of governing parameters on the instability of the system is discussed thoroughly. The forces causing instability reinforce together and are found to be tightly coupled. It is observed that the strength of nonuniform heat source and the electric Rayleigh number is to hasten, while an increase in the Biot number is to delay the onset of Marangoni electroconvection. Finally, the results obtained under the limiting cases are shown to be in good agreement with those published earlier.  相似文献   

8.
This paper deals with the study of the buoyancy induced heat and mass transfer from a slender body of revolution embedded in a saturated porous medium. The study has reported the important case of a cylinder with linear temperature and concentration distributions. The governing parameters for the problem under study are buoyancy ratio (N) and Lewis number (Le). The numerical values of local Nusselt and local Sherwood numbers have also been computed for a wide range of N and Le. The results pertaining to the variations of local Nusselt number, local Sherwood number, N and Le with one another have been studied graphically, and it has been concluded that the local Nusselt number decreases while the local Sherwood number increases along with N > 0 for increasing Lewis number. The local Nusselt number decreases while the local Sherwood number increases along with Le for positive values of N. Also the boundary layer thickness ratio decreases along with Le for N > = 0. In this study, an integral method of Von-Karman type has been used in order to obtain mathematical expressions for local Nusselt and local Sherwood numbers.  相似文献   

9.
The development of magnetic field effect on mixed convective flow in a horizontal channel with a bottom heated open enclosure has been numerically studied. The enclosure considered has rectangular horizontal lower surface and vertical side surfaces. The lower surface is at a uniform temperature Th while other sides of the cavity along with the channel walls are adiabatic. The governing two-dimensional flow equations have been solved by using Galarkin weighted residual finite element technique. The investigations are conducted for different values of Rayleigh number (Ra), Reynolds number (Re) and Hartmann number (Ha). Various characteristics such as streamlines, isotherms and heat transfer rate in terms of the average Nusselt number (Nu), the Drag force (D) and average bulk temperature (θav) are presented. The results indicate that the mentioned parameters strongly affect the flow phenomenon and temperature field inside the cavity whereas in the channel these effects are less significant.  相似文献   

10.
The present study investigates the Marangoni convective fluid flow over a rotating disk with an inclined magnetic field and in the presence of a nonuniform heat source when the disk moves upward/downward with nonconstant velocity with the incorporation of the second law of thermodynamics. The Keller-box method is applied to the reduced system of equations to draw graphical illustrations. The study of these illustrations to examine the effects of involved pertinent parameters, like, magnetic field, Marangoni number, angle of inclination, vertical disk movement parameter, heat source, and disk rotation, on velocity and temperature profiles, reveals some interesting findings. From the analysis, it can be concluded that the skin friction coefficient increases with more angle of inclination and the Marangoni number with the reverse trend in case of vertical disk movement. Also, the Marangoni number and vertical disk motion diminish the Nusselt number with a positive effect in the case of more angle of inclination. The rate of entropy generation is enhanced with the temperature ratio parameter while it diminishes with the inclined magnetic field of any strength. The current study in its reduced form is in excellent agreement with earlier published work to ensure the validity of the used numerical scheme.  相似文献   

11.
Three-dimensional convection of air in a vertical cylinder isothermally heated and cooled from a side wall was numerically computed both in magnetic and gravity fields. A single electric coil was placed around a cylinder to generate a magnetic field. Convection was calculated for various coil levels and magnetic strengths. The gravity field, magnetic strength and Rayleigh number are shown to have substantial effect. Convection modes and heat transfer rates are also presented.  相似文献   

12.
The objective of this paper is to numerically investigate the mixed convective flow and heat transfer controlled by a heated hollow cylinder inside an open cavity attached with a horizontal channel. All the boundaries of the channel and cavity are perfectly insulated while the inner surface of the cylinder is heated uniformly by heat flux q. The equations of conservation of mass, momentum, and energy were solved using adequate boundary conditions by Galarkin's weighted residual finite element technique. The solution has been performed in the computational domain as a whole with proper treatment at the solid/fluid interface. Computations have been conducted for Ra = 103–105, Prandtl number Pr varying from 0.7 to 7 and ratio of solid to fluid thermal conductivities from 0.2 to 50. Results are presented in terms of streamlines, isotherms, heat transfer rate in terms of the average Nusselt number (Nuav), drag force (D), and maximum bulk temperature (θmax). © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21002  相似文献   

13.
14.
A numerical analysis is carried out to study the performance of natural convection inside a square open tilted cavity filled with air. An adiabatic circular solid cylinder is placed at the center of the cavity and the sidewall in front of the breathing space is heated by a constant heat flux. The top and bottom walls are kept at the ambient constant temperature. Two‐dimensional forms of Navier–Stokes equations along with the energy equations are solved using the Galerkin finite element method. Results are obtained for a range of Grashof numbers from 103 to 106 at Pr = 0.71 while the tilt angle varies from 0 to 45° and the diameter ratio of the cylinder is considered to be 0.2, 0.3, and 0.4 with constant physical properties. The parametric studies for a wide range of cylinder diameter ratios and cavity tilt angles show significant features of the present problem in terms of stream functions and temperature profiles. The computational results indicate that the heat transfer coefficient is strongly influenced by the above governing parameters. It is also found that the average Nusselt number decreases when the diameter ratio increases. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21001  相似文献   

15.
IntroductionWhen a Pressure wave such as the shock waveprOPagates along a constant area straight tube andreaches at the open end, an impulsive wave is emittedOutward from the tube exit toward the surrounding areaand causes an impulsive noise laal a sonic boomproduced by a supersonic aircraft. Therefore, someauthors have investigated the discharge of a weakcompression wave from an open end in order to reducethe impulsive noise in relation to'the high speed railWaytUImel in the previous paped'…  相似文献   

16.
An experiment has been carried out to investigate the local convective heat transfer from a horizontal circular copper tube in an acoustic cavitation field. The effects of acoustical parameters (including sound source intensity, the vibrator location and sound distance), fluid temperature and thermophysical properties of working fluid on heat transfer enhancement were studied, as well as the variation of heat transfer rate with sound source intensity at constant heat flux. Results show that convection heat transfer was remarkably enhanced due to disturbance and impingement by cavitation bubble. Among these cases tested, the maximum augmentation ratio of 3.95 was reached for acetone with a cluster of cavitation bubbles impinging perpendicularly on the tube surface.  相似文献   

17.
针对燃气轮机燃油燃烧室改成双燃料燃烧室对燃料喷嘴进行一体化概念设计,并采用CFD技术对其双燃料燃烧流场进行数值模拟。针对燃烧室燃用C7H16和裂解气燃料的不同情况,采用标准κ-ε湍流模型、化学平衡条件下的快速化学反应系统和简单概率密度函数(PDF)燃烧模型、液体燃料的喷雾模型以及SIMPLE算法。模拟并对比分析了两种燃料燃烧时的燃烧效率、出口温度均匀性、壁面最高温度以及速度分布等参数随工况变化的趋势,并得出结论:1)不同燃料燃烧时的流场特征基本保持一致;2)裂解气燃料燃烧时,其燃烧效率较高,但出口温度均匀性较差;3)在加入相同焓值的燃料进入燃烧室时,裂解气燃料燃烧得到的出口温度低于燃油的燃烧状态。  相似文献   

18.
In this paper, the performance of a commercial Fe/Cr based catalyst for the water gas shift reaction was investigated. The catalyst was used in a water gas shift pilot plant which processed real product gas from a commercial biomass steam gasification plant with two different qualities: extracted before and extracted after scrubbing with a rapeseed methyl ester gas scrubber. The performance of the WGS pilot plant regarding these two different gas qualities was investigated. For this reason, extensive chemical analyses were carried out. CO, CO2, CH4, N2, O2, C2H6, C2H4, and C2H2 and H2S, COS, and C4H4 S were measured. In addition, GCMS tar and NH3 analyses were performed. Furthermore, the catalyst's activity was observed by measuring the temperature profiles along the reactors of the water gas shift pilot plant. During the 200 h of operation with both product gas qualities, no catalyst deactivation could be observed. A CO conversion up to 93% as well as a GCMS tar reduction (about 28%) along the water gas shift pilot plant was obtained. Furthermore, a specific H2 production of 63 g H2 per kg biomass (dry and ash free) was reached with both product gas qualities. No significant performance difference could be observed.  相似文献   

19.
Natural convection heat transfer and flow structure in an anisotropic porous medium of square cavity saturated with a Boussinesq fluid has been studied experimentally using a Hele‐Shaw cell. The permeability ratio defined by K = Ky/Kx was set to three different values: 0.4, 1, and 2.5. The convection patterns at the three permeability ratios are visualized at several different Rayleigh numbers by a pH indicator method. When K is 0.25, the visualized flow is mainly in the vertical direction. On the contrary, for K = 4 the convecting flow is in the horizontal direction. The average heat transfer coefficients are also measured, and the corresponding Nusselt numbers are plotted as a function of K. It is found that the corresponding Nusselt numbers are correlated with (KRa)1/2. The experimental results of the flow pattern and heat transfer are in good agreement with those obtained by our previous theory. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(6): 463–474, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10046  相似文献   

20.
The free convection boundary layer flow over an arbitrarily inclined heated plate in a porous medium with Soret and Dufour effects is studied by transforming the governing equations into a universal form. The generalized equations can be used to derive the similarity solutions for limiting cases of horizontal and vertical plates and to calculate the heat and mass transfer characteristics between these two limiting cases. The heat and mass transfer characteristics are presented as functions of Soret parameter, Dufour parameter, inclination variable, Lewis number, and buoyancy ratio. Results show that an increase in the Dufour parameter tends to decrease the local heat transfer rate, and an increase in the Soret parameter tends to decrease the local mass transfer rate. As the inclination variable increases, the local Nusselt number and the local Sherwood number decrease from their respective values for horizontal plates, reach their respective minima, and then increase to their respective values for vertical plates. The minima are where the tangential and normal components of buoyancy force are comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号