首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The present study proposes a combination of solar-powered components (two heaters, an evaporator, and a steam reformer) with a proton exchange membrane fuel cell to form a powerplant that converts methanol to electricity. The solar radiation heats up the mass flows of methanol-water mixture and air and sustains the endothermic methanol steam reformer at a sufficient reaction temperature (typically between 220 and 300 °C). In order to compare the different types of energy (thermal, chemical, and electrical), an exergetic analysis is applied to the entire system, considering only the useful part of energy that can be converted to work. The effect of the solar radiation intensity and of different operational and geometrical parameters like the total inlet flow rate of methanol-water mixture, the size of the fuel cell, and the cell voltage on the performance of the entire system is investigated. The total exergetic efficiency comparing the electrical power output with the exergy input in form of chemical and solar exergy reaches values of up to 35%, while the exergetic efficiency only accounting for the conversion of chemical fuel to electricity (and neglecting the ‘cost-free’ solar input) is increased up to 59%. At the same time, an electrical power density per irradiated area of more than 920 W m−2 is obtained for a solar heat flux of 1000 W m−2.  相似文献   

2.
In this paper we investigate the effects of thermodynamic irreversibilities on the exergetic performance of proton exchange membrane (PEM) fuel cells as a function of cell operating temperature, pressures of anode and cathode, current density, and membrane thickness. The practical operating conditions are selected to be 3–5 atm for anode and cathode pressures, and 323–353 K for the cell temperatures, respectively. In addition, the membrane thicknesses are chosen as 0.016, 0.018 and 0.02 cm, respectively. Moreover, the current density range of the PEM fuel cell is selected to be 0.01–2.0 A cm?2. It is concluded that exergy efficiency of PEM fuel cell decreases with a rise in membrane thickness and current density, and increases with a rise of cell operating pressure and with a decrease of current density for the same membrane thickness. Thus, it can be said that, in order to increase the exergetic performance of PEM fuel cell, the lower membrane thickness, the lower current density and the higher cell operating pressure should be selected in case PEM fuel cell is operated at constant cell temperature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A simple mathematical model, based on the basic chemical reactions and mass transfer, was developed to predict some important characteristics of molten carbonate fuel cells (MCFC) with LiNaCO3 and LiKCO3 electrolytes for steady state operating conditions. The parallel and cross gas flow patterns were analyzed. Model simulates polarization characteristics, the effect of temperature, pressure and electrolyte type on the cell performance, various losses in the cell and gas flow rate changes through cell. The effect of fuel utilization on the cell potential and efficiency was also analyzed. Model predicts a better performance for the MCFC with LiNaCO3 electrolyte and the cross flow pattern, in general. Results show a strong influence of the operating temperature on the cell potential at temperatures below 625 °C, where cell potential increases rapidly with increasing temperature. Above this temperature, however, the cell potential has almost a steady asymptotic profile. The model predicts cell efficiency steadily improving with increase in fuel utilization. The cell potential decreases almost linearly with increase in the fuel utilization percentage for both electrolytes. Models results show a stronger dependency of the cell potential on the operating pressure than that described by the Nerst equation which is in line with fact that the real variations in the cell potential can be higher due to decreased various losses.  相似文献   

4.
An ecological performance analysis for an irreversible dual-cycle cogeneration system has been performed. The objective function is called as the exergetic-performance coefficient (EPC) and defined as the ratio of total exergy output to the loss rate of availability. The general and optimal performances of the irreversible dual-cycle cogeneration system, having a finite-rate of heat transfer, heat leak and internal irreversibilities based on the EPC objective function have been investigated. Comparisons with respect to the optimal total-exergy output are also provided in order to establish the utility of the new exergetic-performance coefficient. The analyzed results of the dual-cycle cogeneration system considered, working at maximum EPC conditions, have a significant advantage in terms of entropy-generation rate and can be used for the selection of optimal design parameters.  相似文献   

5.
In the present work, a model-based parametric analysis of the performance of a direct ethanol polymer electrolyte membrane fuel cell (DE-PEMFC) is conducted with the purpose to investigate the effect of several parameters on the cell's operation. The analysis is based on a previously validated one-dimensional mathematical model that describes the operation of a DE-PEMFC in steady state. More precisely, the effect of several operational and structural parameters on (i) the ethanol crossover rate from the anode to the cathode side of the cell, (ii) the parasitic current generation (mixed potential formation) and (iii) the total cell performance is investigated. According to the model predictions it was found that the increase of the ethanol feed concentration leads to higher ethanol crossover rates, higher parasitic currents and higher mixed potential values resulting in the decrease of the cell's power density. However there is an optimum ethanol feed concentration (approximately 1.0 mol L−1) for which the cell power density reaches its highest value. The platinum (Pt) loading of the anode and the cathode catalytic layers affects strongly the cell performance. Higher values of Pt loading of the catalytic layers increase the specific reaction surface area resulting in higher cell power densities. An increase of the anode catalyst loading compared to an equal one of the cathode catalyst loading has greater impact on the cell's power density. Another interesting finding is that increasing the diffusion layers’ porosity up to a certain extent, improves the cell power density despite the fact that the parasitic current increases. This is explained by the fact that the reactants’ concentrations over the catalysts are increased, leading to lower activation overpotential values, which are the main source of the total cell overpotentials. Moreover, the use of a thicker membrane leads to lower ethanol crossover rate, lower parasitic current and lower mixed potential values in comparison to the use of a thinner one. Finally, according to the model predictions when the cell operates at low current densities the use of a thick membrane is necessary to reduce the negative effect of the ethanol crossover. However, in the case where the cell operates at higher current densities (lower ethanol crossover rates) a thinner membrane reduces the ohmic overpotential leading to higher power density values.  相似文献   

6.
In order to develop a new fuel cell and/or to enhance fuel cell performance, it is very important to understand clearly what the real performance of a fuel cell is. However, some important issues for the assessment of a fuel cell performance still require additional considerations. For example, the performance of a fuel cell is generally described based on an isothermal condition in spite of the non-uniform cell temperature distributions under real operating conditions. For this purpose, a formulation for the performance of a fuel cell operating at an isentropic condition (e.g., non-uniform cell temperature) is introduced in this study and compared with a reversible isothermal case (e.g., uniform cell temperature). Also, it is necessary to reveal the real difference in the performance of a fuel cell and a heat engine. Understanding of the purpose of the hybridization of a fuel cell with a heat engine is another important issue. In the present study, issues related to the performance of a fuel cell are considered from a thermodynamic point of view.  相似文献   

7.
A mathematical framework that provides practical guidelines for user adoption is proposed for fuel cell performance evaluation. By leveraging the mathematical framework, two measures that describe the average and worst-case performance are presented. To facilitate the computation of the performance measures in a practical setting, we model the distribution of the voltages at different current points as a Gaussian process. Then the minimum number of samples needed to estimate the performance measures is obtained using information-theoretic notions. Furthermore, we introduce a sensing algorithm that finds the current points that are maximally informative about the voltage. Observing the voltages at the points identified by the proposed algorithm enables the user to estimate the voltages at the unobserved points. The proposed performance measures and the corresponding results are validated on a fuel cell dataset provided by an industrial user whose conclusion coincides with the judgement from the fuel cell manufacturer.  相似文献   

8.
Fuel cell hybrid electric vehicles (FCHEVs) are considered to be the most attractive long-term option for passenger cars. Several barriers, such as cost, durability and hydrogen refueling infrastructure, must be overcome for a wider use of FCHEVs. In this paper, a mid-sized FCHEV is modeled and simulated in ADVISOR to analyze the influence of hybridization factor on vehicle performance and costs. The results are compared with those of the Toyota Mirai in order to find the optimum size of the fuel cell stack and the number of battery modules that meet various driving requirements, minimize hydrogen consumption and vehicle cost. The best results are obtained by reducing the fuel cell stack power by 58%. A 7.7% increase in equivalent fuel economy (71.6 MPGe) and a reduction of 25% in the vehicle cost is achieved.  相似文献   

9.
An evaluation model of PEM fuel cell engine (FCE) performance is developed, which provides a new method for a quantitative assessment of FCE performance. Some basic properties and their sub-performance indexes are proposed to evaluate overall performance by analyzing FCE properties, and then the Analytic Hierarchy Process (AHP) theory is used to obtain weighted values of the indexes. Proper scoring functions are established to convert the index values into scores and finally we get an overall score of FCE performance. An example for a real FCE evaluation is also given to illustrate the method.  相似文献   

10.
Fabrication and testing of Proton Exchange Membrane (PEM) fuel cells to improve performance is an expensive and time-consuming process. This paper presents a novel procedure for using computer simulation – namely the ANSYS PEM Fuel Cell Module – to identify key performance limiting factors in fuel cell mode of a PEM Unitised Regenerative Fuel cell (URFC) fabricated at RMIT by comparing its performance with a higher performing URFC reported in the literature. The diagnostic analysis is performed in two steps: firstly, changing operating conditions to ensure both cells are compared based on the same conditions; secondly identifying differences in cell properties, specifically catalyst exchange current densities and membrane conductivity. The simulation results show that applying the more optimal operating conditions of the higher performing cell doubled the maximum power of the RMIT cell (from 0.163 W/cm2 to 0.327 W/cm2). To overcome the remaining performance deficit in the ohmic polarization region, the value of the protonic conduction coefficient in the modelled RMIT cell had to be increased. Overall the study indicates that computer simulation modelling, in conjunction with carefully focussed experiments, can be a very useful tool in diagnosing fuel-cell performance problems.  相似文献   

11.
Anodic fuel recirculation system has a significant role on the parasitic power of proton exchange membrane fuel cell (PEMFC). In this paper, different fuel supply systems for a PEMFC including a mechanical compressor, an ejector and an electrochemical pump are evaluated. Furthermore, the performances of ejector and electrochemical pump are studied at different operating conditions including operating temperature of 333 K–353 K, operating pressure of 2 bar–4 bar, relative humidity of 20%–100%, stack cells number from 150 to 400 and PEMFC active area of 0.03 m2–0.1 m2. The results reveal that higher temperature of PEMFC leads to lower power consumption of the electrochemical pump, because activation over-potential of electrochemical pump decreases at higher temperatures. Moreover, higher operating temperature and pressure of PEMFC leads to higher stoichiometric ratio and hydrogen recirculation ratio because the motive flow energy in ejector enhances. In addition, the recirculation ratio and hydrogen stoichiometric ratio increase, almost linearly, with increase of anodic relative humidity. Utilization of mechanical compressor leads to lower system efficiency than other fuel recirculating devices due to more power consumption. Utilization of electrochemical pump in anodic recirculation system is a promising alternative to ejector due to lower noise level, better controllability and wide range of operating conditions.  相似文献   

12.
CHP (combined heat and power) is a technology that allows to provide electrical and thermal energy. CHP is normally used in systems that produce wasted heat at high temperature to recover energy and increase overall system efficiency. The aim of this work is to investigate the possibility to recover heat produced by a 5 kW PEFC system for residential applications (hot water and building heating). As known, PEFCs work at low temperature (60-90 °C) and the experiments have been carried out in order to improve the overall system efficiency by reusing heat that is normally wasted.The work was developed during an Italian National project PNR-FISR “Polymeric and Ceramic Fuel Cell” coordinated by CNR-ITAE. A 5 kW PEFC system, developed with NUVERA Fuel Cells in the framework of the project, was tested in cogeneration configuration recovering wasted heat with a heat exchanger directly connected to cathode out.Tests on PEFC system were carried out in the range 2.5-5 kW, maintaining the working stack temperature at 71 °C. Heat, produced at different power levels, was removed from the system by using a regulated water flow in the heat exchanger. A peculiar feature of the system is the so-called “direct water injection” at the cathode, that allows simultaneous cooling and humidification of the stack. This characteristic permitted the recovery of most of the waste heat produced by the fuel cell.The performance of the PEFC unit was analyzed in terms of electrical, thermal and total efficiency. Tests showed that it is possible to obtain water at about 68 °C under different power levels. Moreover, experimental data showed that heat recovered was maximum when heat exchanger worked at nominal power and, under these conditions, the overall system efficiency increased up to 85%.  相似文献   

13.
Proton exchange membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed which includes the transient dynamics of the air system with varying back pressure. Compared to the conventional fixed back pressure operation, the optimal operation discussed in this paper can achieve higher system efficiency over the full load range. Finally, the model is applied as part of a dynamic forward-looking vehicle model of a load-following direct hydrogen fuel cell vehicle to explore the energy economy optimization potential of fuel cell vehicles.  相似文献   

14.
This research focuses on modeling the relationships between operating parameters and performance measures for a single stack direct methanol fuel cell (DMFC). Four operating parameters, including temperature, methanol concentration, and methanol and air flow rates, are considered in this work. Performance of the DMFC is described by the relationship between current density and voltage. The open circuit voltage and voltage drop in the closed circuit due to resistance, activation, and concentration polarization are influenced by the operating parameters. To consider both modeling accuracy and simplicity, a semi-empirical model is developed in this work by integrating theoretical and approximation models. Experiments were designed and conducted to collect the required data and to obtain the coefficients in the semi-empirical model. The error analysis indicates that our semi-empirical model is effective for predicating the DMFC's performance. The influence of the four operating parameters on the DMFC's performance is also analyzed based on this semi-empirical model. Possible applications of the semi-empirical model in the optimal control of fuel cell systems are also discussed.  相似文献   

15.
To improve the freeze start ability of a fuel cell system some significant influencing parameters are defined and investigated. Experiments with a fuel cell test system are carried out in a climate chamber at various conditions. The time interval until fuel cell stack power equals 50% of its maximum power is defined as an indicator for a successful freeze start as well as a value for comparison and evaluation of the results. The target of this work is the minimization of this freeze start time by avoiding the freezing of process water on the catalyst layer of the Membrane Electrode Assembly (MEA), since this leads to temporary performance losses.The shut down strategy of the fuel cell system is identified to be one of the main parameters influencing the freeze start. It is found that a higher degree of dryness in the stack leads to a significant improvement in the freeze start performance, since the water absorbing capacity of the membrane increases and therefore also the time until its saturation. If this saturation takes place after the temperature of the MEA reached 0 °C, no significant ice-formation occurs. It is shown that by improving the shut down strategy of the fuel cell system at TStart = −6 °C a start without performance loss can be realized. At temperatures lower than that temporary performance losses occur.Even if a lower voltage leads to a higher current and therefore to a higher water production rate, its effect on the freeze start due to the increased heat of reaction is positive. Further investigated parameters, for example the volume of the coolant loop, also affect the freeze start ability, but it can be concluded that the shut down strategy is of main importance.  相似文献   

16.
Within the last years there has been increasing interest in direct liquid fuel cells as power sources for portable devices and, in the future, power plants for electric vehicles and other transport media as ships will join those applications. Methanol is considerably more convenient and easy to use than gaseous hydrogen and a considerable work is devoted to the development of direct methanol fuel cells. But ethanol has much lower toxicity and from an ecological viewpoint ethanol is exceptional among all other types of fuel as is the only chemical fuel in renewable supply. The aim of this study is to investigate the possibility of using direct alcohol fuel cells fed with alcohol mixtures. For this purpose, a comparative exergy analysis of a direct alcohol fuel cell fed with alcohol mixtures against the same fuel cell fed with single alcohols is performed. The exergetic efficiency and the exergy loss and destruction are calculated and compared in each case. When alcohol mixtures are fed to the fuel cell, the contribution of each fuel to the fuel cell performance is weighted attending to their relative proportion in the aqueous solution. The optimum alcohol composition for methanol/ethanol mixtures has been determined.  相似文献   

17.
A hybrid system combining a 2 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack and a lead–acid battery pack is developed for a lightweight cruising vehicle. The dynamic performances of this PEMFC system with and without the assistance of the batteries are systematically investigated in a series of laboratory and road tests. The stack current and voltage have timely dynamic responses to the load variations. Particularly, the current overshoot and voltage undershoot both happen during the step-up load tests. These phenomena are closely related to the charge double-layer effect and the mass transfer mechanisms such as the water and gas transport and distribution in the fuel cell. When the external load is beyond the range of the fuel cell system, the battery immediately participates in power output with a higher transient discharging current especially in the accelerating and climbing processes. The DC–DC converter exhibits a satisfying performance in adaptive modulation. It helps rectify the voltage output in a rigid manner and prevent the fuel cell system from being overloaded. The dynamic responses of other operating parameters such as the anodic operating pressure and the inlet and outlet temperatures are also investigated. The results show that such a hybrid system is able to dynamically satisfy the vehicular power demand.  相似文献   

18.
This paper has performed an assessment of lifecycle (as known as well-to-wheels, WTW) greenhouse gas (GHG) emissions and energy consumption of a fuel cell vehicle (FCV). The simulation tool MATLAB/Simulink is employed to examine the real-time behaviors of an FCV, which are used to determine the energy efficiency and the fuel economy of the FCV. Then, the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model is used to analyze the fuel-cycle energy consumption and GHG emissions for hydrogen fuels. Three potential pathways of hydrogen production for FCV application are examined, namely, steam reforming of natural gas, water electrolysis using grid electricity, and water electrolysis using photovoltaic (PV) electricity, respectively. Results show that the FCV has the maximum system efficiency of 60%, which occurs at about 25% of the maximum net system power. In addition, the FCVs fueled with PV electrolysis hydrogen could reduce about 99.2% energy consumption and 46.6% GHG emissions as compared to the conventional gasoline vehicles (GVs). However, the lifecycle energy consumption and GHG emissions of the FCVs fueled with grid-electrolysis hydrogen are 35% and 52.8% respectively higher than those of the conventional GVs. As compared to the grid-based battery electric vehicles (BEVs), the FCVs fueled with reforming hydrogen from natural gas are about 79.0% and 66.4% in the lifecycle energy consumption and GHG emissions, respectively.  相似文献   

19.
Oxygen gain is the difference in hydrogen fuel cell performance operating on oxygen-depleted and oxygen-rich cathode fuel streams. Oxygen gain experiments provide insight into the degree of oxygen mass-transport resistance within a fuel cell. By taking these measurements under different operating conditions, or over time, one can determine how oxygen mass transport varies with operating modes and/or aging. This paper provides techniques to differentiate between mass-transport resistance within the catalyst layer and within the gas-diffusion medium for a polymer-electrolyte membrane fuel cell. Two extreme cases are treated in which all mass transfer limitations are located only (i) within the catalyst layer or (ii) outside the catalyst layer in the gas-diffusion medium. These two limiting cases are treated using a relatively simple model of the cathode potential and common oxygen gain experimental techniques. This analysis demonstrates decisively different oxygen gain behavior for the two limiting cases. For catalyst layer mass transfer resistance alone, oxygen gain values are limited to a finite range of values. However, for gas-diffusion layer mass transfer resistance alone, the oxygen gain is not confined to a finite range of values. Therefore, this work provides a straightforward diagnostic method for locating the prominent source of mass transfer degradation in a PEMFC cathode.  相似文献   

20.
Previous studies of a bi-cell piezoelectric proton exchange membrane fuel cell with a nozzle and diffuser (PZT-PEMFC-ND bi-cell), using a novel pseudo-bipolar design, have shown that the performance of the bi-cell could be 1.6 times greater than that of the single cell. In this study, this novel design, using a reduced nozzle and diffuser, contains two cells with two outside anodes and two inside cathodes that share a common PZT vibrating device for pumping air flow. The results show that the bi-cell should be operated with a larger stoichiometric ratio of 1.5 and a cell temperature of 50 °C to prevent concentration loss. Furthermore, the performance of the bi-cell using one degraded membrane electrode assembly (MEA) and one normal MEA is investigated to understand the current flow characteristic of the bi-cell. Although an internal current is observed, the bi-cell can still deliver a non-negative power. This finding will help reinforce the viability of using a PZT-PEMFC-ND bi-cell for future stack designs. Moreover, the power consumption of the PZT device is temperature-dependant and this should be taken into consideration when determining the net power of the PZT-PEMFC-ND bi-cell. The maximum net power of the bi-cell is found to be 0.7 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号