首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 812 毫秒
1.
高温煤焦油加氢制取轻质燃料油工艺的运行实践   总被引:3,自引:1,他引:2  
文章介绍了黑龙江省七台河宝泰隆煤化工有限责任公司以地产煤焦油为原料,采用加氢精制和加氢裂化等相结合的工艺,将高温煤焦油的馏份油逐步加工,逐步分离,生产出优质燃料油调和组份。在高温煤焦油加氢生产燃料油的过程中,为得到高燃料油收率,必须采用加氢精制和加氢裂化相结合的工艺,为高温煤焦油的加工开辟了新的路线。  相似文献   

2.
介绍了煤焦油加氢反应机理,结合目前国内煤焦油加氢技术和酒钢自产煤焦油性质,对焦油加氢制燃料油的工艺路线、工艺条件、催化剂类型等进行研究,并对酒钢煤焦油加氢制燃料油可行性进行了分析。  相似文献   

3.
简要介绍了煤焦油加氢技术的发展历程,列举了国内已投产运行的煤焦油加氢装置,通过对比,阐述了高温煤焦油与中低温煤焦油在性质和馏分组成土的差异,在高温煤焦油加氢的技术途径方面着重讲解了宝泰隆圣迈煤化工有限责任公司(以下简称圣迈公司)的高温煤焦油切虐馏分加氢工艺,并对高温煤焦油全馏分加氢途径的弊端进行了分析,在高温煤焦油加氢的发展方向方面,以圣迈公司30万t/a的高温煤焦油深加工及10万t/a高温煤焦油混合馏分加氢联产模式为例,介绍了一种新的生产路线。  相似文献   

4.
本文简单介绍煤焦油及其加工工艺,以介绍煤焦油在高温下加氢制取轻质燃料油的加工过程为重点。在高温下以煤焦油为原料加氢制备轻质燃料油可以增加煤炭副产品的产品价值和使用价值,这也符合开发新能源、原料废物循环使用、环保的政策。显而易见,煤焦油的加工工艺有非常广阔的前景。  相似文献   

5.
煤焦油加工技术进展及工业化现状   总被引:3,自引:0,他引:3  
研究了煤焦油的性质、组成、加工利用机理、加工工艺存在的问题等。指出高温煤焦油传统深加工今后工作重点是增加产品品种,提高产品质量。高温煤焦油加工利用的重点在于开发高活性催化剂,提高加氢转化率和燃料油回收率;中低温煤焦油加工利用以生产燃料油或燃料-化工型路线为主,后者为其产业化方向。  相似文献   

6.
《煤化工》2015,(4)
对高温煤焦油加氢尾油的分析表明,其各项指标均能满足生产针状焦的预处理溶剂要求,可以作为工业上溶剂-沉降法生产煤系针状焦的优质溶剂;而高温煤焦油生产针状焦的精制沥青炭化馏出物为中性煤焦油,可回收作为煤焦油加氢原料。基于此,提出了高温煤焦油馏分油加氢与溶剂-沉降法生产针状焦的联合装置,以实现两种工艺方法的互补优化。通过初步技术论证和技术经济测算可知,两种工艺的合理组合,具有可行性和较好的经济效益。  相似文献   

7.
高温煤焦油加氢生产燃料油的条件苛刻,工艺复杂,操作难度大。文章介绍了黑龙江省七台河宝泰隆煤化工有限责任公司通过调整生产工艺路线,增加部分未转化油入加氢精制,降低加氢精制的操作难度,提高加氢裂化的稳定性,达到降低加氢精制和加氢裂化在生产工程中相互制约和相互影响的目的,使整套装置的安全性和稳定性得到提高。  相似文献   

8.
综述了中低温煤焦油加氢技术进展。介绍了中低温煤焦油的性质特点,重点阐述了中低温煤焦油加氢工艺技术特点、发展现状及趋势,详细分析、比较不同加氢技术工艺,指出了未来中低温煤焦油加氢生产燃料油与化工产品型路线的产业化发展方向。  相似文献   

9.
高温煤焦油加氢工艺比较复杂,七台河宝泰隆公司高温煤焦油加氢装置为全国首套,属于高温、高压、临氢装置,操作难度大。由于高温煤焦油密度大,含胶质、杂质、盐类、水分多,所以在加工前必须进行脱盐、脱水、脱杂质,再经过减压蒸馏切割掉含机械杂质的重油,使油品轻质化,然后再将轻质油入反应系统加氢反应。本套减压蒸馏系统通过实际运行操作,获得了长周期稳定运行。  相似文献   

10.
介绍了中低温煤焦油的组成与性质,以及中低温煤焦油生产、加工和利用的现状和加氢产品油的特性。综述了近年来我国中低温煤焦油加氢制备燃料油研究进展以及国内几家企业典型的加氢工艺并阐述了加氢原理。展望了未来我国中低温煤焦油加氢制备燃料油的广阔前景。  相似文献   

11.
以中低温煤焦油全馏分为原料,采用加氢精制-加氢裂化两段串联工艺在中试装置上开展加氢改质实验,结果表明,石脑油产品可作为优质的催化重整预加氢原料,柴油产品可用来生产优质低凝点国Ⅴ柴油,尾油馏分可作为优质的加氢裂化原料、催化裂化原料或乙烯裂解原料。中低温煤焦油全馏分加氢改质技术可以最大限度地提高轻油收率,具有技术合理可行、液体收率高、产品质量好等特点,具有良好的工业应用前景。  相似文献   

12.
煤焦油加氢裂化反应及其催化剂的研究   总被引:1,自引:0,他引:1  
以煤焦油为原料,研究加氢裂化反应类型及反应产物油馏分的调制机理。以γ-Al2O3为载体,Mo、Ni为加氢活性组分,采用分步浸渍法制备负载型MoO3-NiO/γ-Al2O3加氢裂化催化剂。在高压反应釜上考察反应压力、反应温度对煤焦油加氢催化裂化反应的影响,比较了3种不同NiO质量分数的催化剂加氢活性,实验结果表明,NiO质量分数为3.68%的催化剂活性最好,并获得了低硫、低氮、低芳烃的反应产物油。  相似文献   

13.
Three inputs were necessary to make catalytic hydrogenation of coal possible. One was the ammonia synthesis which, in 1910, introduced high pressure and temperature into the chemical industry. The second was the experimentation by F. Bergius who showed, in 1913, that coal can be liquefied by adding hydrogen at high pressure and temperature. The liquid products were similar to coal tar. They were not of the quality required for gasoline or diesel fuel production. The use of catalysts to refine the coal oil appeared then to be hopeless since coals contained sulfur, a poison for all then known hydrogenation catalysts. The third input was methanol synthesis in 1923. M. Pier found selective, oxidic catalysts that were less sensitive to sulfur than e.g. the metallic catalyst for the ammonia synthesis.In 1924 M. Pier, in the laboratories of the BASF, prepared sulfur resistant coal hydrogenation catalysts: sulfides and oxides of molybdenum, tungsten, and the iron group metals. With these catalysts it became possible to add hydrogen; split carbon-carbon bonds; and eliminate such heteroelements as sulfur, oxygen and nitrogen from coals and oils. Thus fuels were produced that met petroleum fuel specifications.Optimum catalyst action was achieved by subdividing coal hydrogenation into two stages. The coal was converted, with a dispersed catalyst in the “liquid phase”, into middle oil. This was then hydrogenated over fixed bed catalyst, in the “vapor phase”, to gasoline. On this basis a large scale demonstration plant for the liquefaction of central German brown coal was erected in 1927.The development of catalysts for these two stages proceeded on different routes. Liquid phase catalysts were discarded after one pass through the reactor. They were cheap, or used in very small amounts. It was found soon that coal of different rank required different catalysts, and that the mineral matter of the coal played an important role.The first commercially used vapor phase catalysts were of the hydrorefining type. Hydrocracking activity was achieved by using high temperatures. A great step forward was made in 1930 when a special preparation of tungsten disulfide permitted hydrocracking activity at low temperatures. Thus the first essentially dual function catalyst was found. Its hydrocracking activitity was further increased, and gasolines with a higher octane number were obtained by using it on acidic supports such as materials containing alumina-silica.Such supported catalysts were poisoned by the nitrogen compounds present in coal oils. Therefore a refining step for these oils was needed. The vapor phase was subdivided into the “prehydrogenation” (hydrorefining) and “splitting hydrogenation” (hydrocracking) steps. Further development of catalysts with specific functions for these two steps proceeded rapidly. In addition, separate catalysts were developed for the production of gasolines with a high content of aromatics.The various catalysts developed primarily for the hydrogenation of coal derived oils introduced hydrogen processing into the petroleum refining industry. There they were further modified and improved for the processing of petroleum. These improved catalysts, in turn, will be of help to a future coal liquefaction industry.  相似文献   

14.
煤焦油加氢技术概述   总被引:1,自引:0,他引:1  
杜娟  吴凡 《广东化工》2014,(17):105-106
文章主要对煤焦油加氢技术从反应原理、工艺过程、运行实例进行了探讨。对煤焦油加氢的反应原理进行了重点描述;对目前已研发出的中低温煤焦油加氢技术进行了汇总;对国内现行的煤焦油加氢运行实例进行了罗列;最后对煤焦油加氢技术的发展趋势与前景进行了展望。  相似文献   

15.
高玉安 《广东化工》2012,39(6):112-113
对鲁奇炉气化炉生产煤气过程副产的煤焦油,利用现有的加氢工艺技术,进行加氢精制,脱除油中的硫、氮、氧等杂原子及对烯烃、芳烃、不饱和烃等加氢饱和过程,生产出优质的石脑油和燃料油,提高了煤焦油的附加值,并保护了环境。  相似文献   

16.
利用小型固定床加氢实验装置,将煤焦油和其加氢后的尾油混合,在温度(360~420)℃、压力(13~15)MPa、氢油体积比(1 500~1 700)∶1和液体体积空速0.25 h-1条件下进行加氢处理,所得产品切割得到的汽油馏分、柴油馏分和尾油馏分,分别占产物质量的16.12%、78.83%和5.05%,且产品中硫、氮含量很低,汽油中硫含量16.7μg·g~(-1),氮含量36μg·g~(-1),柴油中硫含量102.6μg·g~(-1),氮含量97μg·g~(-1),可用作清洁燃料。结果表明,尾油循环在煤焦油加氢过程中对煤焦油具有稀释作用,不仅减轻了设备负荷,同时也可以提高汽油和柴油收率。因此,以煤焦油加氢尾油循环加氢是一种高效、绿色环保制备燃料油的方法。  相似文献   

17.
针对煤炭在干馏、气化或热解过程中的副产物——煤焦油的高效清洁利用问题,分析了煤焦油的来源以及煤焦油加氢的目的、作用和原理;以煤热解过程产生的中低温煤焦油的加氢改质处理工艺为例,论述了加氢精制工艺、加氢精制-加氢裂化工艺、液相裂解加氢工艺、非均相悬浮床加氢工艺的优缺点及其在国内加氢改质装置的生产应用效果;结果表明,煤焦油...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号