首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cellulose diacetate grafting poly(caprolactone monoacrylate) copolymers (CDA‐g‐PCLA) were synthesized by a two‐step reaction of cellulose diacetate (CDA) with poly(caprolactone monoacrylate) (PCLA). The isocyanate‐terminated intermediate (NCOPCLA) was prepared and grafted onto cellulose diacetate chains. The results of the structure analysis indicated that PCLA was connected to CDA by chemical bonding. The flow temperature of graft copolymers was lower than that of the pure CDA and decreased with increasing the grafting percentage. Outdoor soil burial tests and active sludge tests indicated that the graft copolymers have good biodegradability in natural conditions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 85–90, 2003  相似文献   

2.
Surface modification of various solid polysaccharide substrates was conducted by grafting methyl acrylate (MA) and styrene via atom transfer radical polymerization (ATRP) to produce well‐defined polymer grafts. The hydroxyl groups on the surfaces of the substrates were reacted with 2‐bromoisobutyryl bromide followed by graft copolymerization under ATRP conditions. The studied substrates were filter paper, microcrystalline cellulose, Lyocell fibers, dialysis tubing, and chitosan films. The modified substrates were analyzed by FT‐IR, water contact angle measurements, TGA, and SEM. FT‐IR characterization of the grafted substrates showed significant differences between the different substrates in the amount of grafted polymer. Higher amounts of polymer seem to be possible to graft from native cellulose substrates than from regenerated cellulose substrates. To investigate whether the grafted polymers were “living” after a longer time period, a second layer of polystyrene was grafted from a filter paper modified with PMA one year ago. FT‐IR characterization of the filter paper showed a peak corresponding to styrene, indicating that a block copolymer had been formed on the surface. Graft copolymerization can be used to change and tailor the surface properties of the polysaccharide substrates. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4155–4162, 2006  相似文献   

3.
1,6‐Hexanediol diacrylate (HDDA) was grafted onto polypropylene (PP) substrates in the presence of benzophenone (BP) and isopropylthioxanthone (ITX) photoinitiators, and then polyurethane acrylate formulations were coated onto the HDDA‐g‐PP substrates, using UV radiation. The amount grafted and the grafting efficiency of the polymerizations were determined gravimetrically. The effects of the photoinitiator concentration and the UV radiation intensity on the physicochemical surface properties and the grafting efficiency of the UV‐radiation grafting polymerizations were characterized in detail using contact‐angle measurements, Fourier transform infrared spectroscopy with attenuated total internal reflection, and scanning electron microscopy. The results showed that the amount grafted and the surface polarity of the HDDA‐g‐PP substrates both increased linearly with increasing BP photoinitiator concentration and UV radiation intensity, and that the addition of a small amount of ITX markedly enhanced both parameters, probably due to photosensitization. The adhesion of the UV‐cured coating onto the HDDA‐g‐PP substrates was evaluated using the crosshatch adhesion test. The results indicated that the amount of HDDA grafted onto the PP substrates should exceed about 1 mmol/cm2 for satisfactory adhesion with the UV‐cured coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1446–1461, 2006  相似文献   

4.
采用“两步法”合成了二醋酸纤维素与聚己内酯单丙烯酸酯接枝共聚物(CDA-g-PCLA)。首先以聚己内酯单丙烯酸酯(PCLA)与2,4-甲苯二异氰酸酯(TDI)反应,得到端异氰酸酯预聚物(NCOPCLA),然后将该预聚物与二醋酸纤维素(CDA)进行接枝反应得到接枝共聚物(CDA-g-PCLA)。结构分析的结果表明:PCLA是通过化学键连接到CDA上;热分析表明:接枝共聚物的粘流温度(Tf)比纯二醋酸纤维素的粘流温度低,而且随着接枝率的提高,粘流温度降低。  相似文献   

5.
The photografting of methacrylic acid (MAA) onto high‐density polyethylene (HDPE) initiated by aliphatic ketones (acetone, butanone, and cyclohexanone) in aqueous solutions with different pH values adjusted by adding different amount of mineral acids was reported. Acids significantly enhanced the photografting yield, and the extent of grafting generally increased with decreasing pH value. The effect of pH value on the grafting reactions varied with the acid used. The grafting of MAA onto HDPE surface was confirmed with FTIR and SEM characterizations. The water absorbency of the grafted p‐MAA varied with the extent of grafting. When the extent of grafting was less than 2000–3000 μg/cm2, grafted p‐MAA absorbed about 25–30% water, whereas at higher extent of grafting, it absorbed about 50% water. The mechanism of the acid enhancement of the photografting of MAA initiated by aliphatic ketones in aqueous solutions is believed to be attributed to the change of the solubility of monomer in the solution and the conformation of grafted chains, both are favorable for accelerating grafting reactions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
An antifouling surface is highly desirable for many biomedical applications. In this study, poly(vinyl chloride) (PVC) films were endowed with the improved properties of resisting nonspecific protein adsorption and platelet adhesion simply through being coated with a kind of mixed‐charge zwitterionic polymer, poly(3‐sulfopropyl methacrylate–methacrylatoethyl trimethyl ammonium chloride–glycidyl methacrylate) (PSTG), with random moieties of negatively charged 3‐sulfopropyl methacrylate potassium, positively charged [2‐(methacryloyloxy)‐ethyl] trimethylammonium chloride, and glycidyl methacrylate. The PSTG‐grafted PVC films were formed by the simple immersion of an amino‐functionalized PVC film into a PSTG solution. A grafting density of 220.84 µg/cm2 of PSTG4‐grafted PVC film was successfully obtained. The PSTG4‐grafted PVC film showed a lower contact angle (37.5 °) than the ungrafted PVC film (98.3 °). The in vitro protein adsorption results show that the bovine serum albumin adsorption amount decreased 6.72 µg/cm2 in the case of the PSTG4‐grafted PVC film, whereas that on the ungrafted PVC film was 28.54 µg/cm2. So, PSTG‐grafted PVC films could be promising materials for medical devices. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44632.  相似文献   

7.
Glycidyl methacrylate (GMA) was pre‐irradiation grafted into ETFE base film of 25 μm thickness up to graft levels of 300%. The grafted films were sulfonated using a mixture of sulfite and bisulfite. FTIR and SEM–EDX analysis of the synthesized films and membranes was performed to confirm the grafting and the sulfonation. A pronounced front mechanism for grafting of GMA into ETFE was found. Regarding ex situ fuel cell relevant properties, conductivities of up to 0.25 S cm–1 were attained. For the first time, fuel cell testing of this type of membrane is reported. These grafted membranes performed comparable to a commercial benchmark membrane (Nafion® 212) and better than a styrene‐based grafted membrane with similar conductivity. Post‐test FTIR analysis showed that a fraction of the grafted chains was lost during the test under constant current conditions, yet the membrane still exhibited superior durability compared to a styrene‐based grafted membrane. Hydrolysis of the methacrylate groups was shown not to be the principle cause of the loss of sulfonic acid groups.  相似文献   

8.
Radiation‐induced grafting of glycidyl meth‐acrylate (GMA) onto high‐density polyethylene (HDPE) and the radiation lamination of HDPE by bulk grafting of GMA were reported. The effects of irradiation dose, monomer concentration, and atmosphere on grafting were investigated. The extent of grafting initially increased with irradiation dose and then remained almost constant. The extent of grafting was higher in 2M GMA than in 1M GMA at the same irradiation dose. The extent of grafting in nitrogen was higher than that in air. The grafted samples were characterized with FTIR spectrometry and thermogravimetric (TG) analysis. A carbonyl group was found on grafted HDPE samples, and the carbonyl index increased with the extent of grafting. TG analyses proved the existence of grafted materials on HDPE and the grafted GMA thermally decomposes at a temperature lower than that of HDPE. Strong adhesion could be obtained with radiation lamination of HDPE by bulk grafting of GMA. Benzophenone facilitates the grafting in a proper concentration range. The adhesion mechanism of the laminated samples was the entanglement of the grafted chains. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 772–779, 2005  相似文献   

9.
Ethyl acrylate was readily grafted from an aqueous solution onto cellophane film previously treated in a corona discharge at atmospheric pressure. The effect was found when the corona treatment was carried out not only in air but also in pure nitrogen. The observed grafting was not promoted but depressed by the presence of ferrous ion, which indicated that peroxide radicals were not initiating the graft. A high grafting efficiency was obtained, and the grafted surface was covered with a smooth uniform layer of polymer.  相似文献   

10.
Periodate oxidized cellulose was grafted with methyl methacrylate using hydrazine hydrate in presence and absence of Cu++. The grafting reaction was favoured in presence of Cu++ and it was advantageous to treat first the cellulose material with copper sulphate solution rather than to incorporate it in the polymerization system. The graft yields depended upon the concentrations of copper sulphate and hydrazine hydrate, pH, temperature, and time of polymerization as well as degree of oxidation of cellulose. There were optimal concentrations of copper sulphate (6–8 mmol/l) and hydrazine hydrate (2 mmol/l). A polymerization medium of pH 6 and a temperature of 60°C constituted to optimal pH and temperature for grafting. Oxidized cellulose proved to be more amenable to grafting as compared with unoxidized cellulose and the magnitude of grafting relied on the degree of oxidation. A tentative mechanism was also suggested for grafting of cellulose substrates with a vinyl monomer using a Cu++-hydrazine hydrate redox system.  相似文献   

11.
In this study, we present a new fabrication process for proton exchange membranes based on inorganic/organic nanocomposite using in situ surface grafting reaction and reactive dispersion of silica nanoparticles in the presence of reactive dispersant, urethane acrylate nonionomer (UAN). Through in situ surface grafting reaction of silica nanoparticles, urethane acrylates were chemically introduced on the surface of silica nanoparticles, which were dispersed in DMSO solutions containing UAN and sodium styrene sulfonate (NaSS). After urethane linkage and copolymerization of NaSS, UAN and urethane acrylate moieties of silica nanoparticles, the solutions were converted to silica nanoparticle‐dispersed proton exchange membranes where silica particles were chemically connected with organic polymer chains. 5.89–29.45 wt % of silica nanoparticles could be dispersed and incorporated in polymer membranes, which were confirmed by transmittance electron microscopy (TEM) measurement. On varying weight % of silica nanoparticles dispersed within the membranes, water uptake and oxidative stability of nanocomposite membranes were largely changed, but membranes showed almost the same proton conductivity (greater than 10−2 S cm−1). At 5.89 wt % of silica nanoparticles, nanocomposite membranes showed the lowest water uptake and excellent oxidative stability compared to the sulfonated polyimide membranes fabricated by us. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The graft copolymerization of acrylic acid onto low‐density polyethylene films by simultaneous γ‐ray irradiation was carried out. The effect of water and ethanol as grafting solvents on the distribution of grafted poly (acrylic acid) in the low‐density polyethylene films was studied with optical microscopy observations of dyed and sliced samples and attenuated total reflection/Fourier infrared spectroscopy analysis. When no vigorous homopolymerization occurred, both polyethylene and poly(acrylic acid) existed in the grafted layer, and the thickness of the grafted layer and the poly(acrylic acid) concentration in the grafted layer increased with an increasing degree of grafting, regardless of the grafting conditions, the former increasing faster than the latter. In comparison with water as the solvent, in the absence of the inhibitor, homopolymerization could be suppressed to a certain degree in the ethanol solvent system, whereas in the presence of the inhibitor, obvious homopolymerization occurred at a lower monomer concentration, and both the degree of grafting and the thickness of the grafted layer were lower. Such differences could be explained by the chain transfer and the relatively low solubility of poly(acrylic acid) in ethanol. In addition, an experimental scheme using optical microscopy to observe the dyed and sliced polymers was optimized. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1570–1577, 2007  相似文献   

13.
The aim of this study deals with the modification of the chrome tanned collagen (leather) by in situ grafting with 2‐ethyl hexyl acrylate (2‐EHA) and methacrylic acid (MAC) to improve its dyeability using Amecid Floxine 2GN (C.I. Acid Red 1) and Remazol Black B (C.I. Reactive Black 5). The optimum condition of in situ grafting has been evaluated. FTIR spectra of the ungrafted and the in situ grafted chrome tanned collagen showed that the corresponding band of the acrylate carbonyl ester occurs at 1730–1735 cm?1 when compared with the ungrafted ones. The colorimetric data of the in situ grafted and dyed samples exhibited improvement in color shade, dye bath exhaustion, wash and light fastness relative to the ungrafted and dyed ones. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 174–179, 2006  相似文献   

14.
This paper deals with photostabilization of low density polyethylene films (LDPE) grafted with the UV-stabilizer 2-hydroxy-4-(3-methacryloxy-2-hydroxy-propoxy) benzophenone (HMB). The influence of grafting yield and the other grafting conditions upon photostabilization efficiency of LDPE films were then studied. The chemically bound monomer (HMB) was localized mainly near the surface of an LDPE film. The grafted LDPE film was exposed to an ultraviolet radiation source, and the degree of oxidation and other photooxidative changes were determined by transmission IR and ATR IR spectroscopy. Experimental results show that radiation grafting of a UV-stabilizer upon LDPE films is an efficient photostabilization method.  相似文献   

15.
Methacrylic acid (MAA) was grafted onto polyethylene (PE) surfaces by simultaneous irradiation with UV rays in the liquid phase to estimate hydrophilic and mechanical properties for MAA-grafted PE plates. The amount of grafted MAA increased sigmoidally with UV irradiation time, and the higher grafted amount was obtained at higher monomer concentrations. With an increase in grafting of MAA, the wettabilities from the contact angles of water were enhanced and the refractive indices from the ellipsometry decreased. Though the contact angles remained constant above the grafted amount of 0.02 mmol/cm2, the refractive indices approached the value of PMAA around 0.009 mmol/cm2, indicating that the PE surfaces were fully covered with grafted PMAA chains. Then, at a fixed grafted amount, the grafted layer can absorb more water and the grafted PE plates possessed higher tensile shear adhesive strength, in case grafting was carried out at lower monomer concentrations. Surface properties depended on the density of carboxyl group at the surfaces of grafted layers, whereas adhesive properties depended on the structural properties of grafted chains as well as on the density of carboxyl group of the whole grafted layers.  相似文献   

16.
Polyaniline (PANI) N‐grafted with poly(ethyl acrylate) (PEA) was synthesized by the grafting of bromo‐terminated poly (ethyl acrylate) (PEA‐Br) onto the leucoemeraldine form of PANI. PEA‐Br was synthesized by the atom transfer radical polymerization of ethyl acrylate in the presence of methyl‐2‐bromopropionate and copper(I) chloride/bipyridine as the initiator and catalyst systems, respectively. The leucoemeraldine form of PANI was deprotonated by butyl lithium and then reacted with PEA‐Br to prepare PEA‐g‐PANI graft copolymers containing different amounts of PEA via an N‐grafting reaction. The graft copolymers were characterized by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetric analysis. Solubility testing showed that the solubility of PANI in chloroform was increased by the grafting of PEA onto PANI. The morphology of the PEA‐g‐PANI graft copolymer films was observed by scanning electron microscopy to be homogeneous. The electrical conductivity of the graft copolymers was measured by the four‐probe method. The results show that the conductivity of the PANI decreased significantly with increasing grafting density of PEA onto the PANI backbone up to 7 wt % and then remained almost constant with further increases in the grafting percentage of PEA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Microphase‐separated poly(styrene‐co‐sodium styrene sulfonate) random copolymer (PSSU) membranes were fabricated through a new copolymerization process. Two immiscible monomers, styrene and sodium styrene sulfonate were dissolved in a single solvent and formed homogeneous solutions, which were directly converted to wall‐to‐wall membranes via radical copolymerization process with microphase separation. Since urethane acrylate nonionomer (UAN) chain has amphiphilicity as well as reactivity with vinyl monomers, UAN chain could act not only as compatibilizer for polystyrene and poly(sodium styrene sulfonate), but also as macrocrosslinker, which makes it possible for the formation of crosslinked copolymer of two immiscible polymers without macrophase separation. TEM image of the PSSU membranes showed that nanosized hydrophilic domains formed by hydrophilic/hydrophobic microphase separation were dispersed at hydrophobic matrix phase. PSSU membranes fabricated using UAN chain having longer chain length of polyethylene oxide showed bigger size of hydrophilic domains, which was also confirmed by TEM images. Fabricated PSSU membranes showed proton conductivity higher than 10?2 S/cm and methanol permeability lower than 10?7 cm2/s of Nafion® 117 membranes. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

18.
The modification of heavy‐duty polyethylene films was carried out through the graft copolymerization of acrylamide and vinyl acetate mixtures of different compositions with the simultaneous radiation method. The influence of the synthesis conditions (the irradiation dose, comonomer composition, and dilution) on the degree of grafting was investigated. The grafted samples were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry. The effect of the grafting degree on the thermal stability of the modified polymer was examined. The extraction of heavy and toxic metals such as cadmium, cobalt, copper, nickel, and lead by the modified heavy‐duty polyethylene was evaluated, and the metal‐ion uptake by the grafted and chemically treated samples seemed better than that of the grafted and untreated ones. Both the rate and amount of the metal‐ion uptake were affected by the temperature of the feed solution and the grafting degree. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
A study has been made on the effect of the presence of grafted acrylic layers on the autoadhesion of polyethylene. Methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA), and butyl methacrylate (BMA) were grafted onto high density polyethylene (HDPE). The grafting reaction was faster at higher temperature and methacrylates graft more easily than acrylates. For methacrylates and acrylates, the grafted amount increases with increasing length of the pendant alkyl chain. The grafting temperature is a crucial factor affecting the adhesion of grafted PE samples. For the samples grafted at lower temperature (in a room temperature water bath), the adhesion is very low (less than 50 N/m), even for very thick grafted layers. But for the samples grafted at higher temperature, much higher adhesion can be obtained. The presence of homopolymer was another factor affecting the adhesion of PE samples. When homopolymer is removed from the surface of the grafted sample, higher adhesion can be obtained. For some samples, the highest peel strength of more than 1000 N/m has been obtained. The low adhesion of the samples grafted at low temperature is attributed to the high branching of grafted chains.  相似文献   

20.
Radiation-induced simultaneous grafting of acrylic acid onto high density polyethylene filament is carried out with aqueous solution of acrylic acid in the absence and presence of ethylene dichloride. Distribution of grafted poly(acrylic acid) is studied by two methods. One is optical microscopic investigation of cross sections of dyed filament, and the other is electron probe microscopy of acrylic acid graft filament after conversion to calcium acrylate. Qualitative study with WAXS is also carried out. Grafting begins from the surface or periphery and proceeds, with sharp boundary, to the core. The reaction takes place only in the amorphous part of polyethylene. The percent graft in the grafted part is homogeneous and rather high from the beginning of the reaction; it is true that additional grafting to the already grafted part takes place, but it is not so noticeable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号