首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, thermal instability of shallow spherical shells made of functionally graded material (FGM) is considered. The governing equations for a thin spherical shell based on the Donnell–Mushtari–Vlasov theory are obtained. The equations are derived using the Sanders simplified kinematic relations and variational method. It is assumed that the mechanical properties vary linearly through the shell thickness. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. Analytical solutions are obtained for three types of thermal loading including Uniform Temperature Rise (UTR), Linear Radial Temperature (LRT), and Nonlinear Radial Temperature (NRT). The results are validated with the known data in the literature.

  相似文献   

2.
Buckling analysis of functionally graded material (FGM) beams with surface-bonded piezoelectric layers which are subjected to both thermal loading and constant voltage is studied. The material nonhomogeneous properties are assumed to vary smoothly by distribution of power law through the beam thickness. The Euler-Bernoulli beam theory and nonlinear strain-displacement relation are used to obtain the governing equations of piezoelectric FGM beam. Beam is assumed under three types of thermal loading and various types of boundary conditions. For each case of thermal loading and boundary conditions, closed-form solutions are obtained. The effects of the applied actuator voltage, beam geometry, boundary conditions, and power law index of functionally graded material on the buckling temperature are investigated.  相似文献   

3.
Thermal buckling of circular plates made of functionally graded materials with surface-bounded piezoelectric layers are studied. The material properties of the FG plates are assumed to vary continuously through the plate thickness by distribution of power law of the volume fraction of the constituent materials. The general thermoelastic nonlinear equilibrium and linear stability equations for the piezoelectric FG plate are derived using the variational formulations. Buckling temperatures are derived for solid circular plates under uniform temperature rise, nonlinear and linear temperature variation through the thickness for immovable clamped edge of boundary conditions. The effects of piezo-to-host thickness ratio, applied actuator voltage, boundary condition, and power law index of functionally graded plates on the buckling temperature of plate are investigated. The results are verified with the data in literature.  相似文献   

4.
G. G. Sheng  X. Wang 《热应力杂志》2013,36(11):1105-1118
Considering rotary in-plane inertias, the geometrically non-linear vibrations of the functionally graded cylindrical shells under the combined effect of thermal fields and mechanical excitations are analysed by using the von Kármán non-linear theory. The coupled non-linear partial differential equations are discretized based on a series expansion of linear modes and a multiterm Galerkin's method. The non-linear equation of motion is then solved by the fourth-order Runge-Kutta numerical method. Parametric studies are carried out in order to study the influence of temperature change, volume fraction exponent of functionally graded materials and the geometry parameters on the non-linear dynamic response of the functionally graded cylindrical shells.  相似文献   

5.
B. Mirzavand 《热应力杂志》2013,36(11):1117-1135
A thermal buckling analysis is presented for functionally graded cylindrical shells that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of thermal load and constant applied actuator voltage. The material properties are assumed to vary as a power form of the thickness coordinate. Derivation of the equations is based on the higher-order shear deformation shell theory using the Sanders nonlinear kinematic relations. Results for the buckling temperatures are obtained in the closed form solution. The effects of the applied actuator voltage, shell geometry, and volume fraction exponent of functionally graded material on the buckling temperature are investigated. The results for simpler states are validated with known data in the literature.  相似文献   

6.
In this research work, an exact analytical solution for thermal buckling analysis of functionally graded material (FGM) plates with clamped boundary condition subjected to uniform, linear, and non-linear temperature rises across the thickness direction is developed. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factor. The material properties of FGM plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations are solved analytically for a plate with simply supported boundary conditions. Resulting equations are employed to obtain the closed-form solution for the thermal force resultant for each loading case. Numerical examples covering the effects of the plate aspect ratio, side-to-thickness ratio and gradient index on thermal force resultant are discussed.  相似文献   

7.
This study presents the buckling analysis of thermal loaded solid circular plate made of porous material. It is assumed that the material properties of the porous plate vary across the thickness. The edge of the plate is clamped and the plate is assumed to be geometrically perfect. The geometrical nonlinearities are considered in the Love–Kirchhoff hypothesis sense. Equilibrium and stability equations, derived through the variational formulation, are used to determine the prebuckling temperatures and critical buckling temperatures. The equations are based on the Sanders non-linear strain-displacement relation.The porous plate is assumed of the form where pores are saturated with fluid. Also, the effect of pores distribution and thermal distribution on the critical buckling temperature is investigated.  相似文献   

8.
G. G. Sheng 《热应力杂志》2013,36(12):1249-1267
A theoretical method is developed to investigate the effects of thermal load and ring stiffeners on buckling and vibration characteristics of the functionally graded cylindrical shells, based on the first-order shear deformation theory (FSDT) considering rotary inertia. Heat conduction equation across the shell thickness is used to determine the temperature distribution. Material properties are assumed to be graded across the shell wall thickness of according to a power-law, in terms of the volume fractions of the constituents. The Rayleigh–Ritz procedure is applied to obtain the frequency equation. The effects of stiffener's number and size on natural frequency of functionally graded cylindrical shells are investigated. Moreover, the influences of material composition, thermal loading and shell geometry parameters on buckling and vibration are studied. The obtained results have been compared with the analytical results of other researchers, which showed good agreement. The new features of thermal vibration and buckling of ring-stiffened functionally graded cylindrical shells and some meaningful and interesting results obtained in this article are helpful for the application and the design of functionally graded structures under thermal and mechanical loads.  相似文献   

9.
In this article, a four-variable refined plate theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. A power law distribution is used to describe the variation of volume fraction of material compositions. Equilibrium and stability equations are derived based on the present theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. The influences of many plate parameters on buckling temperature difference will be investigated. It is noticed that the present refined plate theory can predict accurately the critical temperatures of simply supported functionally graded plates.  相似文献   

10.
In this research, the buckling behavior of functionally graded (FG) plates under thermal loading is investigated based on finite element analysis. It is assumed the plate is subjected to a uniform temperature rise across plate thickness. First-order shear deformation theory (FSDT) is utilized for developing the solution method. By using an appropriately designed mesh structure for a perforated plate, the critical thermal buckling temperature is obtained by numerical solution of the problem based on finite element method (FEM). The FG plate is perforated by multiple cutouts. The number of cutouts is assumed one, two, four, or six. Also different geometrical shapes of cutouts including triangle, square, rhombus, pentagon, hexagon, and circle are considered. The influence of the number of cutouts and their geometrical shapes on thermal buckling response is investigated. The effects of the number of sides of cutouts from three (triangle) to infinity (circle) are discussed. Two different boundary conditions are taken into account. Also the influences of the distance between the cutouts and the orientation of cutouts on critical buckling temperature are studied. In addition, the effects of the orientation of ellipse cutouts are studied. Some remarkable conclusions are gained that can be useful in practical applications.  相似文献   

11.
Dynamic thermal postbuckling behavior of functionally graded cylindrical shells with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and applied actuator voltage is studied. The shell material is graded across the thickness according to a power law. The material properties of the functionally graded cylindrical shells are considered to be temperature dependent. The theoretical formulations are based on the Sanders nonlinear kinematic relations, which account for the transverse shear strains, and the third-order shear deformation shell theory is employed. Hamilton's principle is used to derive the equations of motion governing piezoelectric FGM cylindrical shells. A finite difference approximation combined with the Runge-Kutta method is employed to predict the postbuckling equilibrium paths, and the dynamic buckling temperature difference is detected according to Budiansky's stability criterion. Numerical results are presented to demonstrate the effects of the applied actuator voltage, shell geometry, volume fraction exponent in the power-law variation of the FGM, and the temperature dependency of the material properties on the postbuckling behavior of the shell. The results for simpler states are validated with the known results in the literature.  相似文献   

12.
In the present research, thermal buckling of shell made of functionally graded material (FGM) under thermal loads is investigated. The material properties of functionally graded materials (FGMs) are assumed to be graded in the axial direction according to a simple power law distribution in terms of the volume fractions of the constituents. In the previous articles that published, these properties are assumed to be graded in the thickness direction. Nonlinear kinematic (strain-displacement) relations are considered based on the first order shear deformation shell theory. By substituting kinematic and stress-strain relations of functionally graded shell in the total potential energy equation and employing Euler equations, the equilibrium equations are obtained. Applying Euler equations to the second variation of total potential energy equation leads to the stability equations. Then, buckling analysis of functionally graded shell under three types of thermal loads is carried out resulting into closed-form solutions.  相似文献   

13.
Thermal buckling analysis of deep imperfect functionally graded (FGM) spherical shell is considered in this paper. A mixture of ceramic and metal is considered for the FGM shell and the material properties, such as the modulus of elasticity and coefficient of thermal expansion, vary by a power law function through the thickness. Employing the Sanders non-linear kinematic relations, total potential energy function is derived and the equilibrium and stability equations are obtained for the imperfect shell. Approximate solutions satisfying the simply supported boundary condition are assumed and using the Galerkin method the error due to the approximation is minimized. The geometrically imperfect shell is considered and three types of thermal loadings, such as the uniform temperature rise (UTR), linear temperature rise through the thickness (LTR), and non-linear temperature rise through the thickness (NLTR) are considered and their associated buckling temperatures are obtained. The effects of different temperature functions and the magnitude of initial geometric imperfection are examined on the thermal buckling loads of the shell.  相似文献   

14.
This article reports on the thermal instability of functionally graded (FG) annular microplates with different boundary conditions. The modified strain gradient elasticity theory is employed to capture size effects. The non-linear governing equations and boundary conditions are derived based on the first-order shear deformation theory (FSDT) and virtual displacements principle. The generalized differential quadrature technique is implemented so as to discretize. To obtain the critical buckling temperature, the set of linear discretized governing equations is solved as an eigenvalue problem. Also, the non-linear problem of thermal postbuckling is solved by the pseudo arc-length continuation method. The effects of boundary conditions, length scale parameter, and the variation of material through the thickness and geometrical properties on both critical buckling temperature and thermal postbuckling behavior are studied.  相似文献   

15.
In this article, we investigate the buckling analysis of plates that are made of functionally graded materials (FGMs) resting on two-parameter Pasternak's foundations under thermal loads. Three different thermal loads were considered, i.e., uniform temperature rise (UTR), linear and non-linear temperature distributions (LTD and NTD) through the thickness. The mechanical and thermal properties of functionally graded material (FGM) vary continuously along the plate thickness according to a simple power law distribution. Employing an analytical approach, the five coupled governing stability equations, which are derived based on first-order shear deformation plate theory, are converted into two uncoupled partial differential equations (PDEs). Considering the Levy-type solution, these two PDEs are reduced to two ordinary differential equations (ODEs) with variable coefficients. Then, the ODEs are solved using an exact analytical solution, which is called the power series Frobenius method. The appropriate convergence study and comparison with previously published related articles was employed to verify the accuracy of the proposed method. After such verifications, the effects of parameters such as the plate aspect ratio, side-to-thickness ratio, gradient index, and elastic foundation stiffnesses on the critical buckling temperature difference are illustrated and explained. The critical buckling temperatures of functionally graded rectangular plates with six various boundary conditions are reported for the first time and can serve as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

16.
The transient thermal stresses of a functionally graded (FG) cylindrical shell subjected to a thermal shock are investigated. The dynamic temperature fields of FG shells are obtained by using the Laplace transform and power series method. The differential quadrature method is developed to obtain the transient thermal stresses by solving dynamic governing equations in terms of displacements. The effects of the material constitutions on the transient temperature and the thermal stresses are analyzed in the cases of obverse thermal shock and reverse thermal shock. It turns out that the thermal stresses could be alleviated by means of changing the volume fractions of the constituents.  相似文献   

17.
This article presents a theoretical analysis on the thermal buckling behavior of sandwich panels with truss cores under fully clamped boundary conditions, subjected to uniform temperature rise. The Reissner model is developed by ignoring the flexural rigidity of the core and considering the shear stiffness of the sandwich panel is only contributed by truss cores. By using double Fourier expansions to the virtual deformation mode, the critical temperature of sandwich panels is obtained. Theoretically predicted critical temperatures are in good agreement with those from FEM. The effect of boundary conditions and structure parameters of the sandwich panel are also discussed.  相似文献   

18.
A thermal buckling analysis is presented for simply supported rectangular laminated composite plates that are covered with top and bottom piezoelectric actuators, and subjected to the combined action of thermal load and constant applied actuator voltage. The thermomechanical properties of composite and piezoelectric materials are assumed to be linear functions of the temperature. The formulations of the equations are based on the higher-order laminated plate theory of Reddy and using the Sanders nonlinear kinematic relations. The closed-form solutions for the buckling temperature are obtained through the Galerkin procedure and solving the resultant eigenvalue problem, which are convenient to be used in engineering design applications. Numerical examples are presented to verify the proposed method. The effects of the plate geometry, fiber orientation in composite layers, lay-up configuration, different utilized piezoelectric materials, temperature dependency of material properties, thermal conductivity, and energy generation on the buckling load are investigated.  相似文献   

19.
One-dimensional analysis of the thermomechanical response of a 3-layered nickel-functionally graded material-zirconia composite configuration under thermal loading, is the aim of this contribution. A Finite Element code is developed for the analysis. The thickness of the lower layer (nickel) is considered to be “infinite,” when compared to the thickness of the first two layers. The influence of the thickness of the functionally graded layer on the thermomechanical response of the composite material is analysed. Several distributions of the properties inside the functionally graded layer are also examined.  相似文献   

20.
This article is concerned with the theoretical analysis of the functionally graded magneto-electro-thermoelastic hollow cylinder due to uniform surface heating. We analyze the transient thermal stress problem for a functionally graded hollow cylinder constructed of the anisotropic and linear magneto-electro-thermoelastic materials using a laminated composite model as one of theoretical approximation under a plane strain state. As an illustration, we carry out numerical calculations for a functionally graded hollow cylinder constructed of piezoelectric and magnetostrictive materials and examined the behaviors in the transient state. We investigate the effects of the nonhomogeneity of material on the stresses, electric potential, and magnetic potential, and the effect of the applied electric potential on the thermal stress σθθ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号