首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A highly sensitive and fast responding CO sensor was fabricated from a sheet-like SnO2. The SnO sheets were prepared by a room temperature reaction between SnCl2, hydrazine and NaOH, and they were subsequently oxidized into SnO2 sheets at high temperature (600 °C). The morphology and size of the SnO2 sheets could be controlled during the formation of SnO, which influence the sensor response (Ra/Rg) and response time to a great extent. The sensor response of SnO nanosheets to 10 ppm CO was enhanced up to 2.34, and the 90% sensor response time could be reduced to 6 s, which are significantly higher and shorter than those of SnO2 powders (1.57 and 88 s), respectively. The realization of both a high sensitivity and rapid response were explained in terms of rapid gas diffusion onto the entire sensing surface due to the less-agglomerated and very thin structure of SnO2 nanosheets and the catalytic effect of Pt.  相似文献   

2.
The effect of CdO doping on microstructure, conductance and gas-sensing properties of SnO2-based sensors has been presented in this study. Precursor powders with Cd/Sn molar ratios ranging from 0 to 0.5 were prepared by chemical coprecipitation. X-ray diffraction (XRD) analysis indicates that the solid-state reaction in the CdO–SnO2 system occurs and -CdSnO3 with pervoskite structure is formed between 600 and 650°C. CdO doping suppresses SnO2 crystallite growth effectively which has been confirmed by means of XRD, transmission electron microscopy (TEM) and BET method. The 10 mol% Cd-doped SnO2-based sensor shows an excellent ethanol-sensing performance, such as high sensitivity (275 for 100 ppm C2H5OH), rapid response rate (12 s for 90% response time) and high selectivity over CO, H2 and i-C4H10. On the other hand, this sensor has good H2-sensing properties in the absence of ethanol vapor. The sensor operates at 300°C, the sensitivity to 1000 ppm H2 is up to 98, but only 16 and 7 for 1000 ppm CO and i-C4H10, respectively.  相似文献   

3.
Hollow SnO2 spheres were prepared in dimethylfomamide (DMF) by controlled hydrolysis of SnCl2 using newly made carbon microspheres as templates. The phase composition and morphology of the material particles were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The gas sensing properties of sensors based on the hollow SnO2 spheres were investigated. It was found that the sensor exhibited good performances, characterized by high response, good selectivity and very short response time to dilute (C2H5)3N operating at 150 °C, especially, the response to 1 ppb (C2H5)3N attained 7.1 at 150 °C. It was noteworthy that the response to 0.1 ppm C2H5OH of the sensor was 2.7 at 250 °C.  相似文献   

4.
In the present study nanocrystalline pristine and Pd-doped SnO2 (Pd:SnO2) with various mol% Pd have been synthesized by a modified Pechini citrate route. Transmission electron microscopy and X-ray powder diffraction studies were used to characterize the morphology, crystallinity, and structure of the SnO2 and Pd:SnO2. The response of the pristine SnO2 and Pd:SnO2 was studied towards different reducing gases. The 1.5 mol% Pd doping showed an enhanced response of 75 and 95% towards LPG at as low as 50 and 100 °C, respectively, which were quite large high value as compared with pristine SnO2 (38 and 35% at 50 and 100 °C, respectively). Structural characterization revealed that Pd doping reduced the crystallite size of SnO2 and helps in the formation of distinct spherical nanospheres at a calcinations temperature of 500 °C. Thus the increase in LPG response can be correlated with the spherical morphology, a decrease in the crystallite size (11 nm) due to doping with Pd as compared with the pristine SnO2 (26 nm) and main role of Pd as a catalyst.  相似文献   

5.
SnO2-based semiconductor gas sensors have been successfully fabricated and tested for detecting carbon monoxide and methane. The sensitivity and selectivity of the sensors are tailored by incorporation of different additives such as platinum and cerium oxide. While platinum enhances the sensor response to CH4, ceria suppresses its sensitivity in favor of carbon monoxide. The effect of operating temperature on the performance of sensors is reported. Addition of 10% cerium oxide in the SnO2 sample leads to an insignificant response to methane even at an elevated temperature of 450°C, while its response to CO remains intact.  相似文献   

6.
A polyaniline (PAni)/SnO2 hybrid material was prepared by a hydrothermal method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD pattern suggested that PAni did not modify the crystal structure of SnO2, but SnO2 affected the crystallization of PAni to some extent. The gas sensitivity of the PAni/SnO2 hybrid was also studied to ethanol and acetone at operation temperatures of 30, 60 and 90 °C. It was found that the PAni/SnO2 hybrid material had gas sensitivity only when operated at 60 and 90 °C, and it showed a linear relationship between the responses and the concentrations of ethanol and acetone at 90 °C. The sensing mechanism was also discussed.  相似文献   

7.
A composite material of nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate) (poly(AMPS)) was used to make a humidity sensor. The infrared (IR) spectra and microstructure of the material were analyzed, and the humidity sensing and electrical properties of the sensor were measured. The sensor well responded to humidity with a relative good linearity, though it depended on the applied frequency. The temperature influence between 15 and 35 °C was −0.71 and −0.15% RH/°C at 30 and 90% RH, respectively. The sensor showed a negligible hysteresis and fast response time upon humidification and desiccation. The stability of the sensor in a highly humid and alcoholic environment increased with increasing the SiO2 content. The activation energy for conduction reduced with water adsorption. The different impedance plots observed at low and high relative humidity suggested different sensing mechanisms of the SiO2/poly(AMPS) composite material.  相似文献   

8.
CuO/SnO2 heterostructures as well as SnO2(CuO) polycrystalline films have been studied for H2S sensing. Gas sensing properties of these materials have been compared in conditions: 25–300 ppm H2S in N2 at 100–250°C. A shorter response time of the heterostructures as compared to that of the SnO2(CuO) films has been found. It is suggested that the improvement of dynamic sensor properties of SnO2/CuO heterostructures is caused by the localization of electrical barrier between CuO and SnO2 layers.  相似文献   

9.
A silicon-based SnO2 gas sensor has been fabricated for monitoring liquified petroleum gas (LPG), commonly used as town gas. The gas sensor is made by silicon IC technology together with SnOf2 thin-film processing. The whole chip with a size of 9 mm x 9 mm consists of nine sensors (three by three array). each sensor is supported by a thin membrane of SiO2/Si3N4/SiO2 layers that provides a low thermal mass and prevents heat conduction through the surrounding substrate material. Tin oxide thin film is prepared by thermal evaporation of metallic tin granules and subsequent thermal oxidation of the metallic film at 600 °C. To form the SnO2(Pt) thin film, a layer of Pt with a thickness of several tens of angstroms is sputtered onto the tin oxide film and heat treated at 500 °C in air for several hours in order to stabilize its electrical response. The fabricated SnO2(Pt) microsensors exhibit about 85 and 92% sensitivities to 5000 ppm C3H8 and 5000 ppm C4H10 (the main components of LPG) at 250 °C, respectively, and show a rapid response time of less than 5 s.  相似文献   

10.
We have developed a calorimetric sensor utilizing a thermoelectric device supported on a planar alumina substrate. By using a highly selective carbon monoxide (CO) oxidation catalyst and a non-selective platinum (Pt) catalyst, the device can be built to detect either CO or hydrocarbons with high selectivity. The CO oxidation catalyst comprises lead-modified platinum and exhibits excellent selectivity over the 200–400 °C temperature range. The thermoelectric device consists of two thick film junctions made of niobium pentoxide (Nb2O5)-doped titanium dioxide (TiO2) and a lithiated nickel (Ni), which are supported on a planar alumina substrate. The thermocouple detects the difference in temperature due to different catalytic reactions over the two junctions and shows a high output signal because of the high Seebeck coefficient of Nb2O5-doped TiO2 (−400 μV/°C). In gas bench tests, the sensor has a linear output of 0–2.75 mV over 0–1000 ppm of propylene and a response time of 2.5 s (at 90% of amplitude) at a gas temperature of 350 °C. An engine dynamometer evaluation shows that the response of the sensor parallels the change in CO and hydrocarbon constituent concentrations when the engine air-to-fuel ratio is varied.  相似文献   

11.
NO2 sensing properties of SnO2-based varistor-type sensors have been investigated in the temperature range of 400-650°C and in the NO2 concentration range of 15–30 ppm. Pure SnO2 exhibited a weak nonlinear IV characteristic in air, but clear nonlinearity in NO2 at 450°C. The breakdown voltage of SnO2 shifted to a high electric field upon exposure to NO2 and the magnitude of the shift was well correlated with NO2 concentration. Thus, SnO2 exhibited some sensitivity to NO2 as a varistor-type sensor. When SnO2 particles coated with a SiO2 thin film were used as a raw material for fabricating a varistor, the breakdown voltage in air was approximately the double that of pure SnO2 and the sensitivity to 15 ppm NO2 was enhanced slightly. However, the sensitivity to 30 ppm NO2 decreased. The Cr2O3-loading on SnO2 also led to an increase in the breakdown voltage in air, but the Cr2O3 addition was not effective for promoting the NO2 sensitivity under the present experimental conditions.  相似文献   

12.
Potentiometric cell, Au/LiCoO2 5 m/o Co3O4/Li2.88PO3.73N0.14/Li2CO3/Au, has been fabricated and investigated for monitoring CO2 gas. A LiCoO2–Co3O4 mixture was used as the solid-state reference electrode instead of a reference gas. The idea is to keep the lithium activity constant on the reference side using thermodynamic equilibrium at a given temperature. The thermodynamic stability of the reference electrode was studied from the phase stability diagram of Li–Co–C–O system. The Gibb’s free energy of formation of LiCoO2 was estimated at 500°C from the measured value of the cell emf. The sensors showed good reversibility and fast response toward changing CO2 concentrations from 200 to 3000 ppm. The emf values were found to follow a logarithmic Nernstian behavior in the 400–500°C temperature range. CH4 gas did not show any interference effect. Humidity and CO gas decreased the emf values of the sensor slightly. NO and NO2 gases affect this sensor significantly at low temperatures. However, increased operating temperature seems to reduce the interference.  相似文献   

13.
Ultrafine SmFe0.7Co0.3O3 powder, prepared by a sol–gel method, shows a single-phase orthogonal perovskite structure. The influence of annealing temperature upon its crystal cell volume, microstructure, electrical and ethanol-sensing properties was investigated in detail. When the annealing temperature increases from 600 to 950 °C, the unit cell volume of the SmFe0.7Co0.3O3 sample reduces, and its average grain size increases. When the annealing temperature increases from 600 to 850 °C, the optimal working temperature and response to ethanol of the SmFe0.7Co0.3O3 sensor increase, and the response–recovery time shortens. But when the annealing temperature further increases from 850 to 950 °C, there are decreases of the optimal working temperature and sensor response, and the response–recovery time is prolonged. The results indicate that, as for sensor response, its optimal annealing temperature is about 850 °C, and the sensor based on SmFe0.7Co0.3O3 annealed at 850 °C shows the highest response S = 80.8 to 300 ppm ethanol gas, and it has the best response–recovery and selectivity characteristics. When the ethanol concentration is as low as 500 ppm, the curve of its optimal response versus concentration is nearly linear. Meanwhile, the influence mechanisms of annealing temperature upon the conductance, the optimal working temperature and sensor response for SmFe0.7Co0.3O3 were studied.  相似文献   

14.
We have investigated three ways of impregnating PdO on an SnO2 gas sensor to achieve a simple and reliable sensor-fabrication process. These impregnating processes are: (1) coprecipitation of SnO2 and Pd compounds in the solution; (2) addition of PdCl2 to SnO2 gel, followed by precipitation; and (3) infiltration of PdCl2 into calcined SnO2 powder. Processes (1) and (2) introduce Pd into SnO2 particles before particle growth is completed. The phase and microstructures of particles have been analysed by X-ray diffraction, scanning and transmission electron microscopes, and an energy-dispering X-ray spectroscope. The presence of Pd in the process of SnO2 precipitation restrains the growth of SnO2 particles and enhances a uniform distribution of fine PdO powder on the SnO2 grains. SnO2 gas sensors have been fabricated and tested for response to CH4, C2H6 and CO. Processes (1) and (2) show many possibilities of improving SnO2 gas-sensor sensitivity with a simplified fabrication process.  相似文献   

15.
The control of the technological steps such as calcination temperature and introduction of catalytic additives are accepted to be key points in the obtaining of improved sol–gel fabricated SnO2 thick film gas sensors with different sensitivity to NO2 and CO. In this work, after proving that the undoped material calcined at 1000°C is optimum for NO2 detection, grinding is added as third technological step for further modification of particle surface characteristics, allowing to reduce cross-sensitivity to CO. The influence of grinding on the base resistance and on the sensor signals to NO2 and CO is discussed in detail as a function of the structural differences of the sensing material.  相似文献   

16.
The paper reports the successful fabrication of ethanol gas sensors with tin-dioxide (SnO2) thin films integrated with a solid-state heater, which is realized with technologies of micro-electro-mechanical systems (MEMS), and are compatible with VLSI processes. The main sensing part with dimensions of 450×400 μm2 in this developed device is composed of a sensing SnO2 film, which is fabricated by electron-gun evaporation with proper annealing in ambient oxygen gas to yield fine particles and good structure. An integrated solid-state heater with a 4.5 μm-thick cantilever bridge (1000×500 μm2) structure is made of silicon carbide (SiC) material by MEMS technologies. The sensitivity for 1000 ppm ethanol gas reaches as high as 90 with 10 s and 2 min for the response and recovery time, respectively, at an operating temperature of 300°C. Those experimental results also exhibit a much superior performance to that of a popular commercial ethanol gas sensor TGS-822. Therefore, the developed sensor with high performance is a good candidate for some specific application in automobile to detect drink-drive limit and allows an array integration available with various films for controlling each element at separate resistance.  相似文献   

17.
J.  H.  M.  W. J.  E.   《Sensors and actuators. B, Chemical》2000,70(1-3):196-202
We present an approach to optimize the specific response to gases by using specially prepared nanosized platinum on highly dense sputtered polycrystalline SnO2. Structural and morphological analyses of the SnO2 and platinum thin films were performed. Gas measurements were carried out with single chip thin-film SnO2 sensor arrays on silicon substrates. Pt nanoclusters covering the sensitive layer significantly affect the O3, CO and NO2 sensitivities and the corresponding dynamic response.  相似文献   

18.
Pt-loaded metal oxides [WO3/ZrO2, MOx/TiO2 (MOx = WO3, MoO3, V2O5), WO3 and TiO2] equipped with interdigital Au electrodes have been tested as a NOx (NO and NO2) gas sensor at 500 °C. The impedance value at 4 Hz was used as a sensing signal. Among the samples tested, Pt-WO3/TiO2 showed the highest sensor response magnitude to NO. The sensor was found to respond consistently and rapidly to change in concentration of NO and NO2 in the oxygen rich and moist gas mixture at 500 °C. The 90% response and 90% recovery times were as short as less than 5–10 s. The impedance at 4 Hz of the present device was found to vary almost linearly with the logarithm of NOx (NO or NO2) concentration from 10 to 570 ppm. Pt-WO3/TiO2 showed responses to NO and NO2 of the same algebraic sign and nearly the same magnitude, while Pt/WO3 and WO3/TiO2 showed higher response to NO than NO2. The impedance at 4 Hz in the presence of NO for Pt-WO3/TiO2 was almost equal at any O2 concentration examined (1–99%), while in the case of Pt/WO3 and WO3/TiO2 the impedance increased with the oxygen concentration. The features of Pt-WO3/TiO2 are favorable as a NOx sensor that can monitor and control the NOx concentration in automotive exhaust. The effect of WO3 loading of Pt-WO3/ZrO2-based sensor is studied to discuss the role of surface W-OH sites on the NOx sensing.  相似文献   

19.
A novel micromachined single wall carbon nanotube (SWCNT) reinforced nanocrystalline tin dioxide gas sensor has been developed. The presence of SWCNT in SnO2 matrix was realized by a spin-on sol–gel process. The SWCNT/SnO2 sensor's sensitivity for hydrogen detection has greatly increased by a factor of three, in comparison to that of pure SnO2 sensor. The novel sensor also lowers the working temperature, response time and recovery time. The greatly improved performances are mainly attributed to the effective gas accessing nano passes through SWCNT plus the smaller distance between adjacent gas accessing boundaries formed by the distribution of tiny SWCNTs. Therefore, both the spatial requirement (D ≤ 2L, D is the distance between adjacent gas accessing boundaries and L is the space charge layer thickness) and surficial requirement (adequate gas activation area) are met and the maximum inherent sensitivity of SnO2 is achieved.  相似文献   

20.
M.  E.  M.B.  A.  L. 《Sensors and actuators. B, Chemical》1997,40(2-3):205-209
Polypyrrole thin films have been deposited onto a glass substrate by the Langmuir-Blodgett technique to fabricate a selective ammonia (NH3) gas sensor. The d.c. electrical resistance of the sensing elements is found to exhibit a specific increase upon exposure to different gases such as NH3, CO, CH4, H2 in N2 and pure O2. The polypyrrole thin-film detector shows a considerable increase of resistance when exposed to NH3 in N2, and negligible response when exposed to comparable concentrations of interfering gases such as CO, CH4, H2 in N2 and pure O2. The calibration curve for NH3 in N2 at room temperature is measured in the concentration range from 0.01 to 1%. The relative change of the electrical resistance is about 10% for the lower detectable limit of 100 ppm of NH3 in N2. The sensitivity of the Langmuir-Blodgett polypyrrole towards ammonia is considerably higher than that of the electrochemical polypyrrole. The fast rise time and the high sensitivity of the detector are reported as a function of number of the polypyrrole layers. Long-term aging tests of the selective NH3 gas sensor are performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号