首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to prepare and characterize chitosan-coated microspheres containing cyclosporine A (CyA). Microspheres encapsulated with CyA were prepared by solvent evaporation-emulsification methods. Microspheres were immersed in chitosan solution (0.5% w/w) to be coated. Morphology, mean size, and encapsulation efficiency of chitosan-coated microspheres were evaluated. To assess the mucoadhesive properties of this drug delivery system, the percent of mucin adsorption to the surface of coated microspheres was determined. Microspheres were spherical in shape. Encapsulation efficiency of different microsphere formulations varied from 78% to 92%. According to the mucin adsorption results, this particulate system showed suitable mucoadhesive properties. It can be concluded that surface modification of microspheres by chitosan coating would increase the prospects of their usefulness as oral drug delivery systems for CyA.  相似文献   

2.
In this article, the effect of the chitosan molecular weight (MW) on the characteristics of methotrexate (MTX)-encapsulated non-cross-linked chitosan microspheres was studied. Microspheres composed of low-molecular-weight (LMW, 40,000 Da), medium-molecular-weight (MMW, 480,000 Da) and high-molecular-weight (HMW, 850,000 Da) chitosan with the same degree of deacetylation (96%) were obtained by a simple spray-drying method. The MW of chitosan had a noticeable influence on the size distribution, encapsulation efficiency, micromeritic properties (angle of repose and bulk density), controlled release behavior, and mucoadhesive properties. The entrapment efficiencies were in the range of 90–99%. Spray-dried microspheres had a D50 value of 3.3–4.9 μm, which was suitable for nasal insufflations. The microspheres with LMW chitosan have the best flowability and highest bulk density but were found to be poor in terms of adhesion and in controlling the release behavior of MTX. The MMW chitosan microspheres exhibited the strongest adhesion to the mucosal surface, and the angle of repose values were between 34 and 47 degrees. They could control the release rate by modifying the drug/polymer ratios. Microspheres with HMW chitosan exhibited a lower adhesion than MMW chitosan and a lower release rate of MTX. The physical state of MTX in the chitosan matrix was studied by differential scanning calorimetry, which indicated the presence of a solid dispersion of the amorphous drug in the chitosan matrix. Nasal ciliotoxity showed only minor cilia irritation due to the microspheres, and consequently, they are suitable for nasal drug delivery.  相似文献   

3.
In this article, the effect of the chitosan molecular weight (MW) on the characteristics of methotrexate (MTX)-encapsulated non-cross-linked chitosan microspheres was studied. Microspheres composed of low-molecular-weight (LMW, 40,000 Da), medium-molecular-weight (MMW, 480,000 Da) and high-molecular-weight (HMW, 850,000 Da) chitosan with the same degree of deacetylation (96%) were obtained by a simple spray-drying method. The MW of chitosan had a noticeable influence on the size distribution, encapsulation efficiency, micromeritic properties (angle of repose and bulk density), controlled release behavior, and mucoadhesive properties. The entrapment efficiencies were in the range of 90-99%. Spray-dried microspheres had a D(50) value of 3.3-4.9 microm, which was suitable for nasal insufflations. The microspheres with LMW chitosan have the best flowability and highest bulk density but were found to be poor in terms of adhesion and in controlling the release behavior of MTX. The MMW chitosan microspheres exhibited the strongest adhesion to the mucosal surface, and the angle of repose values were between 34 and 47 degrees. They could control the release rate by modifying the drug/polymer ratios. Microspheres with HMW chitosan exhibited a lower adhesion than MMW chitosan and a lower release rate of MTX. The physical state of MTX in the chitosan matrix was studied by differential scanning calorimetry, which indicated the presence of a solid dispersion of the amorphous drug in the chitosan matrix. Nasal ciliotoxity showed only minor cilia irritation due to the microspheres, and consequently, they are suitable for nasal drug delivery.  相似文献   

4.
Background: The aim of this study was to develop chitosan microspheres for nasal delivery of ondansetron hydrochloride (OND). Method: Microspheres were prepared with spray-drying method using glutaraldehyde as the crosslinking agent. Microspheres were characterized in terms of morphology, particle size, zeta potential, production yield, drug content, encapsulation efficiency, and in vitro drug release. Results: All microspheres were spherical in shape with smooth surface and positively charged. Microspheres had also high encapsulation efficiency and the suitable particle size for nasal administration. In vitro studies indicated that all crosslinked microspheres had a significant burst effect, and sustained drug release pattern was observed until 24 hours following burst drug release. Nasal absorption of OND from crosslinked chitosan microspheres was evaluated in rats, and pharmacokinetic parameters of OND calculated from nasal microsphere administration were compared with those of both nasal and parenteral administration of aqueous solutions of OND. In vivo data also supported that OND-loaded microspheres were also able to attain a sustained plasma profile and significantly larger area under the curve values with respect to nasal aqueous solution of OND. Conclusion: Based on in vitro and in vivo data, it could be concluded that crosslinked chitosan microspheres are considered as a nasal delivery system of OND.  相似文献   

5.
Insufficient gastric mucosa drug concentration and short contact time were the main reason for the lack of eradication efficacy of Helicobacter pylori for peptic ulcer patients. Novel multi-core chitosan microspheres were prepared for stomach-specific delivery of hydrophilic antibiotics for the treatment of peptic ulcer. Chitosan microspheres with multiple Eudragit L100 cores were easily prepared by a new emulsification/coagulation encapsulating method. Swelling behaviors, surface amino groups and mucin absorption ability were investigated and the formulation that showed best mucoadhesive potential was adopted. The multi-core chitosan microspheres exhibited good mucoadhesiveness as well as controlled release manner for incorporated antibiotics in acidic environment. The release rate could be easily modulated with accumulative release ranging from 47.3 to 79.3% in 6 h. Accordingly, the multi-core chitosan microspheres could serve as a satisfactory vehicle for stomach-specific delivery of hydrophilic antibiotics.  相似文献   

6.
Chitosan microspheres containing 5-fluorouracil (5-FU), tegafur (FT), and doxifluridine (DFUR) were prepared by the dry-in-oil method using silicone oil with no surfactant as a dispersion medium. For DFUR-containing chitosan microspheres (DFUR-M), reacetylation with acetic anhydride or coating using chitosan and glutaraldehyde was performed. DFUR-M, reacetylated DFUR-M, and chitosan-coated DFUR-M were investigated on in vitro drug release, and the former two microspheres were examined for in vivo degradation after subcutaneous (s.c.) implantation in mice, and in vivo plasma concentration-time profiles after s.c. implantation in rats. The present method gave fairly large microspheres purely composed of chitosan and drug because of no use of surfactant, which showed the mean particle diameters of 300-900 µm and the drug contents of 4-22% (w/w). Encapsulation efficiency of DFUR was higher than that of 5-FU and FT. DFUR-M and reacetylated DFUR-M exhibited spherical shape except chitosan-coated DFUR-M. DFUR-M showed high initial rapid release, which was suppressed to some extent by reacetylation or chitosan coating. DFUR-M and reacetylated DFUR-M subcutaneously implanted were gradually degraded, and approximately half or a little more of the microspheres disappeared from the implanted site at 3 weeks postimplantation. DFUR-M and reacetylated DFUR-M implanted subcutaneously gave similar plasma concentration-time profiles of DFUR, which did not indicate prolonged release in vivo. DFUR-containing chitosan microspheres with fairly large size and good drug content could be obtained by the present preparation but remained to be improved for drug release properties.  相似文献   

7.
Microspheres of disodium cromoglycate (DSCG) were prepared with either polyacrylic acid (Carbopol 934) or sodium carboxymethylcellulose (NaCMC) by the spray-drying technique. The arithmetic mean diameter of the spraydried particles ranged from 3.2 to 5.7 microns. The plain DSCG particles and the microspheres containing NaCMC were spherical and had a smooth surface, whereas the microspheres containing Carbopol 934 were more irregular and partly shrunken. The dissolution rate of the plain DSCG was prolonged when the drug was incorporated with the polymers. The more polymer the microspheres contained the slower the drug release rate. The in vitro mucoadhesion test showed that the plain DSCG was nearly as mucoadhesive as the the plain polymers. The microspheres of DSCG with either of the polymers were, however, clearly more mucoadhesive than the plain starting materials. The adsorption isotherms showed the hygroscopic nature of the polymers and DSCG. The hydration of the microspheres increased as a function of the drug content.  相似文献   

8.
COX-2 inhibitors have demonstrated beneficial effects in colorectal cancer. The purpose of this study was to prepare and evaluate the colon specific microspheres of COX-2 inhibitors using valdecoxib as a model drug. Mucoadhesive core microspheres were prepared using chitosan as polymer and entrapped within Eudragit S 100 for colon targeting. FTIR spectrum of selected, coated microspheres showed peaks of valdecoxib at 3377, 3250, 1334 and 1155 cm−1. XRD showed amorphous character and DSC showed depressed broad endotherm of valdecoxib at 169.07°C, which may be attributed to dilution effect by the amorphous polymer. The coated microspheres were spherical with an average size of 90 μm. Storage of the microspheres at 40°C/75% relative humidity for 6 months indicated no significant drug degradation. The coated microspheres did neither release the drug in acidic pH of stomach (pH 1.2) nor in small intestinal pH between 5 to 6.8, and the release started at pH 7.4, indicting perfect colonic delivery. The coated microspheres pretreated with phosphate buffer pH 7.4 for 30 min, when applied to mucosal surface of freshly excised goat colon, showed good mucoadhesion. The drug release at pH 7.4 and good mucoadhesive property of the microspheres make the system ideal for colonic delivery.  相似文献   

9.
Background: Mucoadhesive drug delivery is a promising strategy to overcome ocular biopharmaceutical constraints. Objective and methods: Ciprofloxacin HCl-loaded reverse phase evaporation liposomes were coated with different concentrations and molecular weights of mucoadhesive biocompatible chitosan polymer to form chitosomes. This colloidal mucoadhesive system was evaluated in vitro and in vivo with respect to deliver the antibiotic to ocular surface. Results and conclusion: The results obtained pointed out that liposome coating process resulted in entrapment efficiency reduction and higher chitosan concentration, and molecular weight showed a more pronounced effect. No morphological differences between coated and uncoated liposomes were observed. Diffusion was the drug release mechanism from chitosomes. Concerning rheological behavior, pseudoplastic flow was characteristic to the prepared chitosomal dispersions. In addition, chitosan coating improved the ocular permeation of ciprofloxacin HCl. Microbiologically; this formulated system enhanced antimicrobial activity of ciprofloxacin HCl against both Gram-positive and Gram-negative bacteria. Moreover, this mucoadhesive system was able to inhibit the growth of Pseudomonas aeruginosa in rabbits' eyes for 24 hours when compared to the marketed preparation. In vivo bacterial conjunctivitis model elucidated that symptoms were controlled by the prolonged release formulation such as that done by the marketed product.  相似文献   

10.
Background: Intestinal targeted mucoadhesive microsphere of probiotics may provide numerous associated health benefits.

Aim: To develop mucoadhesive microspheres that will deliver viable probiotic cells into gut protectively against harsh environmental conditions of stomach for extended period.

Materials and methods: Core mucoadhesive microspheres of Bacillus coagulans were prepared using hypromellose, following coacervation and phase separation technique and were then coated with hypromellose phthalate to achieve their site-specific release. Microspheres were evaluated for percent yield, entrapment efficiency, surface morphology, particle size and size distribution, flow property, swelling property, mucoadhesion property by the in vitro wash-off and the ex vivo mucoadhesive strength tests, in vitro release profile and release kinetic, in vivo probiotic activity, and stability. The values for kinetic constant and regression coefficient of model-dependent approaches and the difference factor, the similarity factor, and the Rescigno index of model-independent approaches were determined for accessing and comparing in vitro performance.

Results: Microsphere formulation batches have percent yield value between 56.26% and 69.13% and entrapment efficiency value between 66.95% and 77.89%. Microspheres were coarser with spherical shape having mean particle size from 28.03 to 48.31 μm. In vitro B. coagulans release profile follows zero-order kinetics and depends on the grade of hypromellose and the B. coagulans-to-hypromellose ratio. Experimental microspheres rendered adequate stability to B. coagulans at room temperature.

Conclusion: Microspheres had delivered B. coagulans in simulated intestinal condition following zero-order kinetics, protectively in simulated gastric condition, exhibiting appreciable mucoadhesion in intestinal condition, which could be useful to achieve site-specific delivery for extended period.  相似文献   

11.
Some naturally occurring biocompatible materials were evaluated as mucoadhesive controlled release excipients for buccal drug delivery. A range of tablets were prepared containing 0-50% w/w xanthan gum, karaya gum, guar gum, and glycol chitosan and were tested for swelling, drug release, and mucoadhesion. Guar gum was a poor mucoadhesive and lacked sufficient physical integrity for buccal delivery. Karaya gum demonstrated superior adhesion to guar gum and was able to provide zero-order drug release, but concentrations greater than 50% w/w may be required to provide suitable sustained release. Xanthan gum showed strong adhesion to the mucosal membrane and the 50% w/w formulation produced zero-order drug release over 4 hours, about the normal time interval between daily meals. Glycol chitosan produced the strongest adhesion, but concentrations greater than 50% w/w are required to produce a nonerodible matrix that can control drug release for over 4 hours. Swelling properties of the tablets were found to be a valuable indicator of the ability of the material to produce sustained release. Swelling studies also gave an indication of the adhesion values of the gum material where adhesion was solely dependent upon penetration of the polymer chains into the mucus layer.  相似文献   

12.
Objective: To develop an oral sustained release formulation of mycophenolate mofetil (MMF) for once-daily dosing, using chitosan-coated polylactic acid (PLA) or poly(lactic-co-glycolic) acid (PLGA) nanoparticles. The role of polymer molecular weight (MW) and drug to polymer ratio in encapsulation efficiency (EE) and release from the nanoparticles was explored in vitro.

Methods: Nanoparticles were prepared by a single emulsion solvent evaporation method where MMF was encapsulated with PLGA or PLA at various polymer MW and drug: polymer ratios. Subsequently, chitosan was added to create coated cationic particles, also at several chitosan MW grades and drug: polymer ratios. All the formulations were evaluated for mean diameter and polydispersity, EE as well as in vitro drug release. Differential scanning calorimetry (DSC), surface morphology, and in vitro mucin binding of the nanoparticles were performed for further characterization.

Results: Two lead formulations comprise MMF: high MW, PLA: medium MW chitosan 1:7:7 (w/w/w), and MMF: high MW, PLGA: high MW chitosan 1:7:7 (w/w/w), which had high EE (94.34% and 75.44%, respectively) and sustained drug release over 12?h with a minimal burst phase. DSC experiments revealed an amorphous form of MMF in the nanoparticle formulations. The surface morphology of the MMF NP showed spherical nanoparticles with minimal visible porosity. The potential for mucoadhesiveness was assessed by changes in zeta potential after incubation of the nanoparticles in mucin.

Conclusion: Two chitosan-coated nanoparticles formulations of MMF had high EE and a desirable sustained drug release profile in the effort to design a once-daily dosage form for MMF.  相似文献   


13.
Particulate systems that could deliver drug specifically to duodenum have not yet been reported. The aim of this study was to develop a novel duodenum-specific drug delivery system based on thiolated chitosan and hydroxypropyl methylcellulose acetate maleate (HPMCAM) for the duodenal ulcer application. Berberine hydrochloride was used as model drug. Thiolated chitosan was synthesized and further used for the preparation of mucoadhesive microspheres. HPMCAM, which is insoluble below pH 3.0 was synthesized and used for the coating of thiolated chitosan microspheres (TCM). The resulting thiolated chitosan immobilized on chitosan was 268.21?±?18 μmol/g. In vitro mucoadhesion study showed that the mucoadhesion property of TCM was better than that of chitosan microspheres. Morphological observation showed that the HPMCAM coating would maintain its integrity in simulated gastric fluid (SGF) for 2?h and dissolved quickly in simulated pathological duodenal fluid (SPDF; pH 3.3). In vitro drug release studies showed that only 4.75% of the drug was released in SGF for 2?h, while nearly 90% of the drug was released within 6?h after transferring into SPDF.  相似文献   

14.
In order to achieve the delivery and controlled release of lactoferrin (LF), a biologically multifunctional protein, chitosan microparticles loaded with LF were prepared. Several types of chitosan microparticles containing LF were prepared by the w/o emulsification-solvent evaporation method, and the particle characteristics and release properties in JP 2nd fluid, pH 6.8, were examined. All kinds of microparticles were obtained at a yield of more than 75% (w/w). LF-loaded microparticles prepared by nonsonication and nonaddition of sulfate, named Ch-LF(N), showed high drug content, small particle size and spherical particle shape. Also, for release properties, Ch-LF(N) exhibited gradual drug release over 7 hr with less remaining in the microparticles. Considering the mucoadhesive properties of chitosan microparticles, Ch-LF(N) are suggested to be useful for gradual supply to topical diseased sites or for effective delivery to intestinal areas with abundant LF receptors.  相似文献   

15.
Particulate systems that could deliver drug specifically to duodenum have not yet been reported. The aim of this study was to develop a novel duodenum-specific drug delivery system based on thiolated chitosan and hydroxypropyl methylcellulose acetate maleate (HPMCAM) for the duodenal ulcer application. Berberine hydrochloride was used as model drug. Thiolated chitosan was synthesized and further used for the preparation of mucoadhesive microspheres. HPMCAM, which is insoluble below pH 3.0 was synthesized and used for the coating of thiolated chitosan microspheres (TCM). The resulting thiolated chitosan immobilized on chitosan was 268.21?±?18 μmol/g. In vitro mucoadhesion study showed that the mucoadhesion property of TCM was better than that of chitosan microspheres. Morphological observation showed that the HPMCAM coating would maintain its integrity in simulated gastric fluid (SGF) for 2?h and dissolved quickly in simulated pathological duodenal fluid (SPDF; pH 3.3). In vitro drug release studies showed that only 4.75% of the drug was released in SGF for 2?h, while nearly 90% of the drug was released within 6?h after transferring into SPDF.  相似文献   

16.
To search for new bioactive materials which can be used as the substitute of bone repairing and drug carriers, Sema3A-loaded chitosan microspheres (SLCM) and silk fibroin (SF) were mixed with calcium sulfate cement (CSC). SEM, particle size analysis and swelling rate determination were performed to study properties of the microspheres. The drug loading, encapsulation efficiency and drug release rate were determined by ELISA. Microspheres with different SLCM weight contents (0.5%, 1% and 5%) were prepared to determine which one has the strongest mechanical properties and the appropriate setting time. It was revealed that CSC/SF/0.5SLCM has satisfactory mechanical properties, and its in vitro biocompatibility was assessed by MTS. Chitosan microspheres (5--18 μm) were globular, the surface was smooth, and the swelling rate is (77.02±5.57)%. With this formula, the setting time was increased with the addition of SLCM in CSC/SF, and the cumulative drug release rate is 44.62% in 28 d. XRD results demonstrate that the main component is calcium sulfate. Also it was found that CSC/SF/0.5SLCM supports the growth of MC3T3 cells. Thus the preparation of CSC/SF/0.5SLCM was reliable, and the products had good structures, physical properties and biocompati-bility, appearing to be a promising bone substitute material.  相似文献   

17.
ABSTRACT

In order to achieve the delivery and controlled release of lactoferrin (LF), a biologically multifunctional protein, chitosan microparticles loaded with LF were prepared. Several types of chitosan microparticles containing LF were prepared by the w/o emulsification-solvent evaporation method, and the particle characteristics and release properties in JP 2nd fluid, pH 6.8, were examined. All kinds of microparticles were obtained at a yield of more than 75% (w/w). LF-loaded microparticles prepared by nonsonication and nonaddition of sulfate, named Ch-LF(N), showed high drug content, small particle size and spherical particle shape. Also, for release properties, Ch-LF(N) exhibited gradual drug release over 7 hr with less remaining in the microparticles. Considering the mucoadhesive properties of chitosan microparticles, Ch-LF(N) are suggested to be useful for gradual supply to topical diseased sites or for effective delivery to intestinal areas with abundant LF receptors.  相似文献   

18.
Objective: Microencapsulation of the anti-inflammatory drug aceclofenac (ACE) was investigated as a means of controlling drug release and minimizing or eliminating local side effects. Method: Microspheres were prepared by a spray-drying technique using solutions of ACE and three polymers, namely, carbopol, chitosan, and polycarbophil, in different weight ratios. Results: The spray-dried mucoadhesive microspheres were characterized in terms of shape (scanning electron microscope), size (6.60–8.40 μm), production yield (34.10–55.62%), and encapsulation efficiency (58.14–90.57%). In vitro release studies were performed in phosphate buffer (pH 6.8) up to 10 hours. The spray-drying process of solutions of ACE with polymeric blends can give prolonged drug release. The in vitro release data were well fit into Higuchi and Korsmeyer–Peppas model and followed Fickian diffusion mechanism. In vivo data showed that the administration of ACE in polymeric microspheres prevented the gastric side effects. Conclusion: The formulations here described can be proposed for the oral administration of nonsteroidal anti-inflammatory drugs with minimal side effects on gastric mucosa.  相似文献   

19.
Development of bioadhesive nanoparticles is of great interest to improve drug absorption through the intestinal barrier. Various Polysaccharide-coated poly(alkylcyanoacrylate) nanoparticles were prepared. The bioadhesive properties of the nanoparticles coated with dextran or chitosan in end-on or side-on conformation were evaluated with an ex-vivo adsorption experiment on rat intestine. Results show that diffusion of nanoparticles in mucus layer was governed by the nanoparticle diameter and isotherms of adsorption were influenced by the nature of polysaccharide used. High amount of nanoparticles coated with chitosan can be entrapped in the mucus layer even at low nanoparticle concentration in suspension. When nanoparticle concentration increased, a pseudo-plateau was reached. In the case of dextran-coated nanoparticles, linear increase of adsorption was observed and no saturation phenomenon was highlighted over the range of nanoparticle concentration used in this study. These results suggested that interactions involved in bioadhesion mechanism depended on the nature of polysaccharide. Electrostatic interactions are enhanced between chitosan-coated nanoparticles and glycoproteins of mucus leading to a saturated adsorption phenomenon whereas dextran-coated nanoparticles interacted by non-electrostatic interactions with mucus resulting in a non-saturated phenomenon. Polysaccharides grafted at the nanoparticle surface in the brush conformation appeared more favorable to promote interactions of nanoparticles with glycoproteins of mucus in comparison with the more compact loop conformation of polysaccharide chains.  相似文献   

20.
Alginate microspheres were prepared by emulsification/internal gelation and coated with chitosan. The ability of chitosan-coated alginate microspheres to increase the paracellular transport across Caco-2 cell monolayers was evaluated in comparison to uncoated microspheres and chitosan solutions. Transport studies were performed by using a permeability marker, Lucifer Yellow (LY), and by measuring the transepithelial electric resistance (TEER) variations. Furthermore, the occurrence of cytotoxic effects was assessed by evaluating neutral red uptake in viable cells and lactate dehydrogenase (LDH) release from damaged cells. A 3-fold increase on LY permeability was obtained for coated microspheres when compared to chitosan solutions. TEER variations were in agreement with permeability results. Chitosan solutions exhibited a dose-dependent toxicity, but coated microspheres did not decrease the viability of cells. Chitosan-coated alginate microspheres have potential to be used as carriers of poorly absorbable hydrophilic drugs to the intestinal epithelia and possibly increase their oral bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号