首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
灌水器埋深对涌泉根灌土壤水氮运移特性的影响   总被引:2,自引:0,他引:2  
为了提高涌泉根灌水肥的利用效率,采用大田入渗试验,探究了不同灌水器埋深条件下涌泉根灌土壤湿润锋运移、土壤水分及氮素分布的规律。结果表明,不同灌水器埋深对湿润锋运移距离以及扩散速率均具有较大的影响。随着灌水器埋深的增加,水平最大湿润峰和垂直湿润峰运移距离均呈递减趋势;湿润锋运移距离与入渗时间有显著的幂函数关系。灌水结束后,在灌水器处铵态氮及硝态氮量最高,距离灌水器越远,氮素量越低;随着再分布进行,铵态氮量逐渐升高,而硝态氮量逐渐降低。  相似文献   

2.
为了提高涌泉根灌水肥一体化灌溉模式下水肥的利用效率,采用大田肥液入渗试验,探究了不同灌水器流量(4,6,8,10 L/h)条件下湿润锋运移、土壤水分及氮素分布的规律.结果表明:不同灌水器流量对湿润锋运移距离及湿润体内水分及氮素分布均具有较大影响,随着流量的增大,各向湿润锋运移距离均增大;灌水结束,湿润体内同一位置处的土壤含水率、铵态氮及硝态氮质量分数均伴随着灌水器流量的增大而增大,湿润体内水分分布相对越均匀;各向湿润锋运移距离均与入渗时间具有显著的幂函数关系,得到以湿润锋运移距离为因变量,入渗时间和流量为自变量的数学模型;灌水结束后随着入渗的继续进行,湿润体内水分及氮素进行再分配,再分布1 d,湿润体内水分分布更加均匀,达到田间持水量;再分布3 d,期间湿润体内水分及铵态氮量逐渐减小而硝态氮量增加.以上研究成果为进一步研究涌泉根灌水氮高效利用技术奠定了基础.  相似文献   

3.
涌泉根灌交汇入渗对土壤水氮运移特性的影响   总被引:1,自引:0,他引:1  
为提高涌泉根灌水肥的利用效率,通过野外肥液入渗试验,探究了不同灌水器间距(30,40,50,60 cm)条件下湿润锋运移、湿润体积、土壤水分及氮素分布的规律.结果表明:不同灌水器间距对湿润锋运移距离以及湿润体体积均具有较大的影响;随着灌水器间距的增大,水平最大湿润距离、产生交汇时间和湿润体体积均呈递增趋势,而交汇面处湿润深度和土壤氮素质量分数均呈减小趋势.灌水结束后,在灌水器处土壤水分及铵态氮量最高,交汇面处次之.随着再分布进行,湿润锋继续运移,湿润体增大,湿润体内氮素量逐渐升高;再分布1 d,湿润体基本达到稳定状态,再分布5 d,铵态氮量基本达到最大值,在观测的15 d内,硝态氮量一直处于持续增加状态.研究为涌泉根灌水氮高效利用奠定了基础.  相似文献   

4.
土壤容重对涌泉根灌土壤水氮运移特性的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
在室内通过人工配置不同水平土壤容重(1.35、1.40、1.45、1.50 g/cm~3),用土箱进行水肥入渗模拟试验,研究土壤容重对累积入渗量、湿润锋运移、土壤水分以及铵态氮和硝态氮运移的影响,建立以土壤容重和入渗时间为自变量,累积入渗量和各向湿润锋运移距离为因变量的经验模型。结果表明:土壤容重对累积入渗量、各向湿润锋运移距离及湿润体内水分和氮素的分布、转化均具有较为显著的影响。随着土壤容重的减小,累积入渗量、湿润锋运移距离、湿润体内水分、铵态氮及硝态氮含量均呈增大趋势。入渗系数K随着土壤容重的增大而减小,入渗指数α随着土壤容重的增大而增大;在同一时刻,湿润体内铵态氮和硝态氮含量的平均值、变化量及转化率均随着土壤容重的增大而增大。距离灌水器越近,铵态氮、硝态氮含量越高;湿润体内铵态氮分布主要集中在灌水器附近,随着再分布进行,湿润体内铵态氮含量、转化率逐渐减小,转化量逐渐增加。灌水结束、再分布3、5、10、15、20 d条件下,以灌水结束时刻为基准,铵态氮含量降幅依次为2.34%、11.41%、34.22%、59.06%和73.75%。湿润体内硝态氮分布区域与水分分布相似,随着再分布进行,湿润体内硝态氮含量、转化量逐渐增大,再分布15 d达到最大值;而转化率呈现出先增大后减小的趋势,再分布10 d转化率达到最大值。灌水结束、再分布3、5、10、15、20 d条件下,以灌水结束时刻为基准,湿润体内硝态氮含量依次增加0.76%、60.12%、156.95%、204.68%和180.51%。土壤容重对涌泉根灌土壤水分和氮素运移、分布及其转化的影响均较为显著。  相似文献   

5.
为研究红壤区域蓄水渗灌关键参数变化对水氮分布的影响,试验设灌水量和灌水器埋深两个因素,每个因素设3个水平,共9个处理.分析影响各因素对土壤入渗率、湿润体内含水率和硝态氮分布影响.结果表明:入渗达到稳定之前灌水量对入渗率的影大于灌水器埋深,垂向湿润锋运移距离随着灌水器埋深增加而减小,随着灌水量的增加而增加;并随着灌水器埋深加大,湿润体范围向右下方移动.土壤含水率随土壤深度增大再逐渐变小,随着灌水量的增加,土壤湿润范围增加;灌水量增加,促进硝态氮的入渗;土壤硝态氮的分布规律为由灌水器周边至湿润体边缘呈现"低-高-低"的分布态势.对土壤水氮的分布显著影响为:灌水量>灌水器埋深.增加一定的灌水量可以促进蓄水渗灌红壤水氮入渗,而增加灌水器埋深则使得湿润体范围向灌水器右下方移动;在红壤地区脐橙等经济作物灌溉中推荐采用高灌水量与深埋灌水器的方式.  相似文献   

6.
涌泉根灌下灌水器埋深对水氮运移特性影响的研究   总被引:1,自引:0,他引:1  
在陕北米脂县西北农林科技大学试验基地进行了涌泉根灌肥液入渗试验,研究了不同灌水器埋深条件下湿润体特征值的变化规律及水氮运移特性。结果表明:涌泉根灌肥液入渗累积入渗量、入渗率及各向湿润锋运移距离均随灌水器埋深增加而减小;累积入渗量与入渗时间之间符合Kostiakov幂函数模型;水平方向和竖直方向湿润锋运移距离均随入渗时间增长而增加。随着埋深增加,土壤含水率峰值出现位置越低,湿润体上部含水率越低,这有助于减小地表蒸发损失,土壤NH_4~+-N含量峰值出现位置越低;以NH_4~+-N峰值为界限,峰值以上,灌水器埋深增加,相同位置处NH_4~+-N含量越低,峰值以下,相同位置处NH_4~+-N含量越高。不同灌水器埋深条件下,土壤剖面NH_4~+-N含量分布差异较大,随埋深增加,入渗结束后NH_4~+-N含量峰值越深,但随着时间的延长,土壤表层NH_4~+-N含量升高速度更快。  相似文献   

7.
涌泉根灌肥液入渗水氮运移特性研究   总被引:7,自引:0,他引:7  
为了提高涌泉根灌模式下水肥利用率,减少氮肥流失与深层渗漏,通过涌泉根灌肥液入渗田间试验,研究了不同肥液质量浓度涌泉根灌入渗湿润体及其水氮运移特性,揭示了涌泉根灌土壤入渗量和湿润锋运移距离随肥液质量浓度的变化关系;建立了不同肥液质量浓度涌泉根灌入渗量和湿润锋运移经验模型;分析了入渗湿润深度范围内肥液质量浓度分别对土壤NO-3-N和NH+4-N含量分布特性的影响。结果表明:肥液质量浓度增大,单位面积累计入渗量随入渗时间增加而增大,并且入渗量和湿润锋运移距离均与入渗时间呈极显著幂函数关系,决定系数分别达到0.98和0.96,均大于临界相关系数rα(0.605 5);入渗再分布阶段,肥液质量浓度41.7 g/L能更好地保证枣树根系水分的吸收,而不同肥液质量浓度对土壤氮素转化率影响有所不同,硝态氮转化率基本不明显,而肥液质量浓度为33.3 g/L时铵态氮转化率最高。  相似文献   

8.
涌泉根灌土壤湿润体运移模型   总被引:2,自引:0,他引:2  
为了探明涌泉根灌土壤入渗湿润体运移的变化规律,以黏壤土为例,在室内选取不同土壤容重、初始含水率、灌水器套筒透水部长度和埋深等4个因素进行试验,研究这些因素对涌泉根灌土壤入渗湿润锋随时间运移关系的影响.结果表明:土壤入渗湿润锋运移速率随土壤容重的增大而减小,随土壤初始含水率的增大而增大,随套筒透水部管长的增长而增大,但不同埋深对灌水器湿润锋的推进速度无显著影响,涌泉根灌土壤入渗湿润体随时间的运移符合幂指数关系,幂指数在水平和垂直向分别为032和02.以此为基础分别建立了湿润锋在水平和垂直向运移距离的预测模型,并建立了包括土壤容重、初始含水率和灌水器套筒透水部长度的综合预测模型.用建立的综合模型对涌泉根灌土壤入渗湿润锋运移距离进行预测,并对预测值与试验值进行了比较后得出,综合模型的预测精度较高.  相似文献   

9.
在米脂山地微灌枣树示范基地进行原状土涌泉根灌入渗试验,研究了多点源交汇入渗条件下涌泉根灌湿润体特征值的变化规律.结果表明,涌泉根灌多点源交汇入渗孔洞处和交汇面处的湿润锋运移距离与入渗时间均符合幂函数关系,交汇面处的湿润锋运移速度比孔洞处的快,最终交汇入渗湿润土体沿孔洞布置方向的剖面形状近似带状;在孔洞底部周围的中间区域...  相似文献   

10.
[目的]探究灌水量和灌水器埋深对单坑渗灌红壤水分入渗特性的影响.[方法]通过室内土箱试验模拟大田单坑渗灌过程,研究了单坑渗灌红壤在不同灌水量(1、2L和3L)和不同灌水器埋深(10、15cm和20cm)条件下湿润锋运移距离、累积入渗量和土壤含水率的分布规律,并采用交替方向隐式差分法对土壤水分空间分布进行了模拟.[结果]...  相似文献   

11.
【目的】探究不同施肥时序下滴灌双点源交汇水、氮的运移规律和分布特征,为滴灌系统施肥装置的合理运行提供技术支撑。【方法】通过室内土槽试验,设置3个硝态氮质量浓度(300、600、900 mg/L)和3种施肥时序(1/2N-1/2W、1/4W-1/2N-1/4W、3/8W-1/2N-1/8W),分析了土壤湿润锋的运移以及水分、硝态氮在土体内的分布情况。【结果】交汇前湿润锋在水平和垂直方向上的运移距离与时间t符合幂函数关系,在交汇面垂直方向上的湿润锋运移距离与时间t可用二项式拟合。各处理的水分分布规律基本相同,随深度的增加,土壤含水率降低,从0~10 cm的30%~35%缓慢降低至10~15 cm土层的19%~25%。在交汇面上的土壤含水率不大于相同土层其他位置的含水率,但硝态氮量比相同土层其他位置的大。增加肥液质量浓度,土体内相同位置的硝态氮量增加。不同施肥时序下,硝态氮在点源交汇区域的内部和边缘的量存在差异。【结论】综合考虑硝态氮的分布规律和减少淋失,在点源交汇情况下,采用水-肥-水的施肥时序(即1/4W-1/2N-1/4W、3/8W-1/2N-1/8W)较肥-水的施肥时序(1/2N-1/2W)能减少硝态氮在点源交汇区域的边缘积累,控制氮肥的淋失。  相似文献   

12.
为了探究微润交替灌溉条件下,地埋微润管合理埋设深度,采用室内土箱模拟试验,研究了当微润管铺设间距为30 cm,压力水头为150 cm,土壤容重为1.25 g/cm3,微润管埋深分别为15和20 cm时的土壤水分累计入渗量、土壤含水率、湿润锋运移距离等指标的变化,每组试验重复3次。结果表明:累计入渗量随时间线性递增,两微润管在埋深15 cm时的累计入渗量比埋深20 cm时的累计入渗量分别高11.33%、13.57%;埋深为15 cm时土壤含水率大于埋深为20 cm的土壤含水率;微润交替灌溉条件下,埋深15 cm时湿润锋运移距离大于埋深20 cm时湿润锋运移距离约0.5~2.9 cm,埋深对湿润锋运移有影响但不显著;湿润锋运移距离与时间的拟合结果为良好的幂函数关系,两者具有显著的相关性;埋深为15 cm时形成的湿润体截面积较埋深20 cm时大,且土体表层已经湿润。  相似文献   

13.
涌泉根灌土壤湿润体特性试验   总被引:4,自引:0,他引:4  
为了进一步探明涌泉根灌土壤湿润体特性的变化规律,通过在陕北山地枣树微灌示范基地进行的大田涌泉根灌入渗试验,研究了不同流量条件下涌泉根灌土壤湿润锋运移距离和水分分布的变化规律,结果表明:湿润体水平扩散半径、向上入渗距离、向下入渗深度等随灌水器流量的增大而增大,且均与入渗时间之间呈显著的幂函数关系,其相关系数均高于0.97.提出了涌泉根灌土壤湿润锋运移距离计算式,经试验验证:湿润锋运移距离预测值和实测值的相对误差均小于5%.在上述研究的基础上,建立了涌泉根灌湿润体内土壤平均含水量的计算式,经试验验证:灌后土壤平均含水量预测值和实测值相对误差均小于8%.根据农田灌水的实际需要,假定在涌泉根灌垂向入渗深度与所设定的计划湿润层相等的条件下,建立了涌泉根灌水平扩散半径与计划湿润层之间的计算式,试验结果表明:水平扩散半径计算值与实测值误差小于10%.  相似文献   

14.
涌泉根灌土壤湿润体特性试验   总被引:2,自引:0,他引:2  
为了进一步探明涌泉根灌土壤湿润体特性的变化规律,通过在陕北山地枣树微灌示范基地进行的大田涌泉根灌入渗试验,研究了不同流量条件下涌泉根灌土壤湿润锋运移距离和水分分布的变化规律,结果表明:湿润体水平扩散半径、向上入渗距离、向下入渗深度等随灌水器流量的增大而增大,且均与入渗时间之间呈显著的幂函数关系,其相关系数均高于0.97.提出了涌泉根灌土壤湿润锋运移距离计算式,经试验验证:湿润锋运移距离预测值和实测值的相对误差均小于5%.在上述研究的基础上,建立了涌泉根灌湿润体内土壤平均含水量的计算式,经试验验证:灌后土壤平均含水量预测值和实测值相对误差均小于8%.根据农田灌水的实际需要,假定在涌泉根灌垂向入渗深度与所设定的计划湿润层相等的条件下,建立了涌泉根灌水平扩散半径与计划湿润层之间的计算式,试验结果表明:水平扩散半径计算值与实测值误差小于10%.  相似文献   

15.
[目的]揭示负压水肥一体化灌溉对红壤水分及氮素运移特征的影响。[方法]配置6种不同质量浓度硝酸铵溶液(0、10、15、20、25、30mg/L),设置无压(负水头高度为0)和负压(1/2极限负水头高度)2个水平进行红壤入渗试验,分析了其入渗特性及氮素分布规律。[结果]硝酸铵溶液促进水分入渗,无压和负压状态下,入渗溶液质量浓度为25mg/L和15mg/L时水平与垂直方向湿润锋运移均达到最大,与相应CK相比累积入渗量最大分别增长2.69倍和3.00倍,平均入渗率分别增长2.38倍和2.18倍;土壤硝态氮和铵态氮量显著增加(p<0.05),与相应CK相比无压和负压状态下硝态氮量最大分别增长8.05倍和7.75倍,铵态氮量最大分别增长13.37倍和10.42倍。停渗时刻,同一质量浓度入渗溶液无压状态下水平与垂直方向湿润锋运移距离、累积入渗量均显著高于负压状态,各处理最大分别高出2.01、2.148和4.69倍;距出水点相同的距离,无压状态下土壤含水率、硝态氮和铵态氮量均高于负压状态。[结论]负压灌溉显著缩短水平与垂直方向湿润锋运移距离,降低土壤累积入渗量、含水率、硝态氮和铵态氮量。2种入渗条件下,土壤硝态氮量随入渗距离增加而增加,而土壤铵态氮量随入渗距离增加则呈下降趋势。  相似文献   

16.
埋深与压力对微润灌湿润体水分运移的影响   总被引:14,自引:0,他引:14  
为探明微润灌土壤湿润体特性,设置5个不同埋深,6个不同压力水头,通过室内土箱试验研究了微润灌土壤水分运动规律。结果表明:压力水头是决定微润灌流量的重要因素;微润带埋深显著影响土壤湿润体的形状,湿润锋水平运移距离与宽深比γ均随埋深的增大而减小,垂直运移距离随埋深的增大而略微增大;土壤累计入渗量与埋深呈负相关关系;累计入渗量随灌水时间的变化过程符合Kostiakov入渗模型,建立了不同埋深累计入渗量预测模型,并用实测值进行了验证,实测值与预测值具有较高的相关性;土壤湿润均匀系数与埋深呈正相关,粘壤土微润灌最适埋深为15~20 cm。  相似文献   

17.
滴头流量对风沙土滴灌湿润锋运移影响的试验研究   总被引:2,自引:0,他引:2  
为了在风沙土地区更为合理的利用滴灌技术,通过室内试验模拟了单点源和双点源滴灌条件下风沙土土壤水分运移过程,研究了不同滴头流量下土壤湿润锋时空动态分布规律。结果表明灌水时间相同时,滴头流量越大,湿润锋运移距离越大;灌水量相同时,滴头流量增大对湿润锋水平运移距离影响较小,但可增大垂直方向运移距离。大流量滴头增大了湿润锋初始运移速度,随着灌水时间的增加,湿润锋运移速度迅速减小并趋于稳定,且不同流量处理之间差异较小。双点源滴灌时,入渗交汇前水分运动规律与单点源入渗规律相同;滴头流量越大,湿润体交汇时间越短,交汇处湿润锋运动速度越快;但滴头正下方含水量高,土壤含水量径向变化较大,增加了土壤含水量空间分布的不均匀性。  相似文献   

18.
为了指导垄沟间(套)作种植田间灌水技术和灌溉系统合理设计,通过长方体土槽模拟垄沟灌溉施氮二维土壤入渗试验,探究4种土壤质地的入渗量随时间变化规律,分析肥液入渗湿润体特征,研究土壤水分、硝态氮和铵态氮空间分布特征.结果表明,随着土壤黏粒含量的增多,土壤比表面积增大,在相同灌水时间内入渗量则小;入渗量累积曲线上升趋势因土壤质地不同存在显著差异.含3参数的Horton入渗模型计算的肥液入渗量精度高,其稳定入渗率参数实用性强,对灌水流量设计有重要的参考价值.随着土壤砂粒含量的增多,同等入渗条件下,湿润锋运移距离越远,且垂向运移距离均大于水平侧渗距离.水平侧渗距离与入渗时间呈指数函数关系,垂向湿润锋运移距离与入渗时间的1/2次方呈线性函数关系.垄沟灌溉施氮方式下,硝态氮在湿润锋边缘累积,铵态氮峰值出现在灌水沟附近.在质地重的土壤下应用垄沟灌溉施肥技术好.  相似文献   

19.
【目的】探究河套灌区滴灌条件下玉米各生育期土壤水氮变化规律及不同灌水量对土壤硝态氮累积量的影响。【方法】通过田间试验,设置高灌水量(D1:76 mm)处理和低灌水量(D2:60 mm)处理,分析土壤含水率和土壤氮素(铵态氮和硝态氮)的动态变化规律,利用HYDRUS-2D模型进行模拟验证与预测。【结果】各处理灌水后土壤含水率呈增加趋势;而土壤铵态氮和硝态氮在灌水施肥后迅速升高,随后下降,D1处理和D2处理不同生育期0~10 cm土层铵态氮量和硝态氮量的平均降幅分别为60.0%~62.0%和40.0%~46.7%。拔节期、抽雄期和灌浆期各土层灌水后D1处理相比D2处理的土壤含水率分别增加了5.9%、8.0%和6.7%,而土壤铵态氮量和硝态氮量随着土层深度的增加而降低。不同生育期硝态氮累积量为拔节期>抽雄期>灌浆期,随着生育期的推进,硝态氮累积量呈降低趋势。土壤含水率及氮素模拟值与实测值的吻合度较高,R2、RMSE和d均介于合理范围内。【结论】玉米生育期120 mm的灌溉定额可有效降低0~60 cm土层的硝态氮累积量,可降低硝态氮在60~100 cm土层的积累量。该研究可为当地灌...  相似文献   

20.
土壤容重对一维垂直浑水肥液入渗水氮运移特性影响   总被引:2,自引:0,他引:2  
为了揭示土壤容重对浑水肥液入渗水氮运移特性的影响,通过室内土柱试验,研究不同土壤容重(1.30,1.35,1.40,1.45 g/cm3)累积入渗量、湿润锋运移距离、土壤含水率分布规律以及土壤硝态氮运移特性,采用Philip入渗模型和电容充电经验模型对累积入渗量进行了拟合,建立了累积入渗量、湿润锋运移距离与土壤容重之间的关系.结果表明:在同一入渗时间下,浑水肥液累积入渗量随土壤容重的增大而减小;土壤容重越大,湿润体体积、湿润体内水分及硝态氮分布范围均越小.浑水肥液累积入渗量符合Philip入渗模型和电容充电经验模型;湿润锋运移距离与入渗时间呈显著幂函数关系;供水结束后土壤含水率及硝态氮含量均随着入渗深度的增加而减小;随着土壤水分再分布上层土壤硝态氮逐渐减小,下层逐渐增大,再分布2 d后硝态氮含量在湿润锋附近出现峰值,整个湿润体硝态氮含量分布趋于均匀.研究成果为进一步研究浑水肥液入渗氮素运移提供基础参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号