首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In future biorefineries, the development of cheap and environmentally friendly solvents for biomass pretreatment is highly desirable. In this sense, low-transition-temperature mixtures (LTTMs) have high potential to serve as green solvents for replacing conventional pretreatment technologies. In this study, a life cycle assessment of LTTMs pretreatment was conducted to determine the environmental impacts caused by biomass delignification. A gate-to-gate analysis which started with harvested oil palm empty fruit bunch and ended with lignin was selected. The environmental impacts such as acidification potential, global warming potential, eutrophication potential, photochemical ozone creation potential, human toxicity potential and volatile organic compounds emission were evaluated. The comparable environmental balances of commercial l-malic acid and cactus malic acid-based LTTMs pretreatment processes verified the suitability of the process with natural malic acid as the source of proton donor. This study concludes that biomass delignification using natural cactus malic acid-based LTTMs had promising features such as high delignification efficiency and environmentally friendly compared to commercial l-malic acid-based LTTMs. Based on environmental point of view, the overall process of biomass delignification using sucrose-based LTTMs had lower CO2 emissions compared to the monosodium glutamate- and choline chloride-based LTTMs. These findings are important for verifying the greenness and sustainability of LTTMs to be applied at industrial scale.  相似文献   

2.
Feathers biomass from poultry industry is considered as an important waste product, which creates serious environmental problems. In this study, keratin was extracted from waste chicken feathers using sodium sulfide as a reducing agent under optimized conditions. The extracted keratin particles were used to develop a bioploymeric film by adding microcrystalline cellulose as nano-additive agent. The calculated yield of 80.2% was obtained for keratin from feathers dry weight 25 g (w/w). The extracted keratin was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, differential scanning calorimetry, wide-angle X-ray diffraction. The physiochemical characteristics of the feathers were compared with the keratin powder. The regenerated keratin particles preserved their chemical composition, thermal strength and stability after chemical extraction. The extracted keratin particles showed 10–20-µm spongy porous microparticles in SEM analysis. The keratin powder was used to synthesize a bioplastic film using glycerol (3.5%) and microcrystalline cellulose (0.2%) in NaOH for 48 h at 60 °C. The calculated thickness of bioplastic film was 1.12 × 10?4 mm with tensile strength of 3.62 ± 0.6 MPa. The Young’s modulus and break elongation for synthesized bioplastic film were 1.52 ± 0.34 MPa and 15.8 ± 2.2%, respectively. The feather and keratin showed maximum similarity index of 64.74% (l-alanyl, l-alanyl, l-alanine, p-nitroanilide) and 64.32% with d-pantethine, respectively, using OMNIC Specta software. Overall, the study presented a highly efficient method to convert the waste feather biomass into a bioplastic film which can be used in biopolymer, biomedical and pharmaceutical industries.  相似文献   

3.
Chain conformation order of poly (l-lactic acid) (PLLA) was investigated by time-lapsed Fourier transform infrared (FTIR) spectroscopy and two-dimensional infrared correlation spectroscopy during the isothermal crystallization at 140 °C. The result showed that the PLLA formed α-crystal during the isothermal crystallization at 140 °C. According to the detailed information in the region of 1000–1500 cm?1 investigated by infrared and 2D correlation spectroscopy, it was found that the conformation of C–O–C groups changed prior to that of CH3 groups. Moreover, the formation of the initial helix chain conformation was interfered by the interchain interactions between the CH3 groups, which consequently resulted in the formation of α-crystal with the distorted 103 helix conformation.  相似文献   

4.
Autologous and allogenic bone grafts are considered as materials of choice for bone reconstructive surgery, but limited availability, risks of transmittable diseases and inconsistent clinical performances have prompted the development of alternative biomaterials. The present work compares the bone regeneration potential of a soybean based bone filler (SB bone filler) in comparison to a commercial 50:50 poly(d,l lactide–glycolide)-based bone graft (Fisiograft® gel) when implanted into a critical size defect (6-mm diameter, 10-mm length) in rabbit distal femurs. The histomorphometric and microhardness analyses of femoral condyles 4, 8, 16 and 24 weeks after surgery showed that no significant difference was found in the percentage of both bone repair and bone in-growth in the external, medium and inner defect areas. The SB filler-treated defects showed significantly higher outer bone formation and microhardness results at 24 weeks than Fisiograft® gel (P < 0.05). Soybean-based biomaterials clearly promoted bone repair through a mechanism of action that is likely to involve both the scaffolding role of the biomaterial for osteoblasts and the induction of their differentiation.  相似文献   

5.
The aim of this study was to evaluate antiproliferative sirolimus- and antioxidative alpha-lipoic acid (ALA)-eluting stents using biodegradable polymer [poly-l-lactic acid (PLA)] in a porcine coronary overstretch restenosis model. Forty coronary arteries of 20 pigs were randomized into four groups in which the coronary arteries had a bare metal stent (BMS, n = 10), ALA-eluting stent with PLA (AES, n = 10), sirolimus-eluting stent with PLA (SES, n = 10), or sirolimus- and ALA-eluting stent with PLA (SAS, n = 10). A histopathological analysis was performed 28 days after the stenting. The ALA and sirolimus released slowly over 30 days. There were no significant differences between groups in the injury or inflammation score; however, there were significant differences in the percent area of stenosis (56.2 ± 11.78 % in BMS vs. 51.5 ± 12.20 % in AES vs. 34.7 ± 7.23 % in SES vs. 28.7 ± 7.30 % in SAS, P < 0.0001) and fibrin score [1.0 (range 1.0–1.0) in BMS vs. 1.0 (range 1.0–1.0) in AES vs. 2.0 (range 2.0–2.0) in SES vs. 2.0 (range 2.0–2.0) in SAS, P < 0.0001] between the four groups. The percent area of stenosis based on micro-computed tomography corresponded with the restenosis rates based on histopathological stenosis in different proportions in the four groups (54.8 ± 7.88 % in BMS vs. 50.4 ± 14.87 % in AES vs. 34.5 ± 7.22 % in SES vs. 28.9 ± 7.22 % in SAS, P < 0.05). SAS showed a better neointimal inhibitory effect than BMS, AES, and SES at 1 month after stenting in a porcine coronary restenosis model. Therefore, SAS with PLA can be a useful drug combination for coronary stent coating to suppress neointimal hyperplasia.  相似文献   

6.
l-Glycine thiourea single crystals have been grown by slow evaporation solution growth technique (SEST). The cell parameters were estimated from single crystal X-ray diffraction analysis and it was found that the material crystallized in the orthorhombic symmetry with space group P212121 and the theoretical data were estimated. The powder X-ray analysis proved its crystalline nature without the formation of secondary phases. The presence of functional groups and the nature of bonds appearing in the material were identified by FTIR spectroscopy. Optical constants were estimated by UV–Visible spectrum and the lower cut off wavelength was observed at 200 nm. The scanning electron microscope analysis has been carried out to determine the surface morphology of the grown crystal. Energy dispersive spectrum was done to confirm the composition of elements present in the title material. The second harmonic generation (SHG) efficiency was done by Kurtz powder technique and the conversion efficiency was compared with KDP crystal of the title compound. Third order nonlinear optical susceptibility was measured using z-scan technique and it was found that the crystal has a positive refractive index which is self focusing in nature. The obtained results showed that l-glycine thiourea crystals are potential materials for NLO device fabrication.  相似文献   

7.
Porous copper@carbon agglomerate (PCCA) is prepared by pyrolysis of Cu3(BTC)2·3H2O (Cu–BTC, BTC = 1,3,5-benzenetricarboxylic acid) in 5% H2–N2 mixture atmosphere. The phase and morphology evolution are thoroughly examined by XRD, Raman, BET, TG, XPS, SEM and TEM, respectively. The results show that PCCA is formed at 400 °C and maintains the cubic morphology of the original Cu–BTC crystal. PCCA is composed by round-shaped copper nanoparticles that covered outside by thin layer of carbon. The non-enzymatic glucose sensing properties of PCCA-modified glassy carbon electrode (Cu/GCE) are characterized by cyclic voltammetry. The sensor shows high sensitivity of 614.3 µA mM?1 to glucose oxidation and negligible responses toward interference from uric acid, ascorbic acid, dopamine and l-cysteine at the level of their physiological concentrations. The sensor also exhibits rapid response (< 6 s), wide linear range (up to 3.33 mM) and low detection limit (0.29 µM at signal/noise ratio (S/N) = 3). Finally, the good stability, reproducibility and repeatability to glucose detection make PCCA a promising catalyst for non-enzymatic glucose sensor.  相似文献   

8.
Calcium phosphate ceramics such as synthetic hydroxyapatite and tricalcium phosphate are widely used in the clinic, but they stimulate less bone regeneration. In this paper, nano-hydroxyapatite/poly(l-lactic acid) (nano-HA/PLLA) spindle composites with good mechanical performance were fabricated by a modified in situ precipitation method. The HA part of composite, distributing homogenously in PLLA matrix, is spindle shape with size of 10–30 nm in diameter and 60–100 nm in length. The molar ratio of Ca/P in the synthesized nano-HA spindles was deduced as 1.52 from the EDS spectra, which is close to the stoichiometric composition of HA (Ca/P & 1.67). The compress strength is up to 150 MPa when the HA content increase to 20 %. The in vitro tests indicate that HA/PLLA bio-composites have good biodegradability and bioactivity when immersed in simulated body fluid solutions. All the results suggested that HA/PLLA nano-biocomposites are appropriate to be applied as bone substitute in bone tissue engineering.  相似文献   

9.
In this article, TiO2-modified ZnO nanotube arrays (NTAs) are successfully synthesized and used to prepare a nonenzymatic biosensor for the detection of glucose and hydrazine hydrate. In brief, the ZnO@TiO2 NTAs are synthesized on zinc foil by two steps of simple hydrothermal method. Therefore, it can be directly used as a working electrode and is not needed to be modified to other electrode surface by any means to form a sensor. In the oxidation of glucose and reduction reaction of hydrazine hydrate, it exhibits excellent electrocatalytic performance. Moreover, it has high sensitivity, a fast response time (less than 3 s), and a detection limit as low as 0.5 μM (S/N = 3) toward glucose and hydrazine hydrate respectively. In the selectivity of the target analyte, the Zn–ZnO@TiO2 nanocomposite electrode can effectively resist the influence of different interferent, including uric acid, dopamine, and l-cysteine.  相似文献   

10.
Cytocompatibility is one of the most important aspects in evaluating biomaterials for tissue engineering applications. In this study, biodegradable polymer scaffolds based on nanocomposites of poly(l-lactic acid) and TiO2 nanoparticles functionalized with oleic acid (5 and 10 wt%) were prepared by thermally induced phase separation method. The aim of this research was to evaluate the properties of nanocomposite scaffolds and to investigate the influence of functionalized nanofiller on their bioactivity, biodegradability and cytocompatibility. The nanocomposite scaffolds showed bioactivity in supersaturated fluids and reduced biodegradation in simulated body fluid when compared to pure PLA scaffold. Cell viability and proliferation potential in contact with nanocomposite scaffolds were tested via MTT assay, while the scaffolds cytotoxic potential was evaluated using lactate dehydrogenase method. It was found that incorporation of functionalized TiO2 nanofiller with content of 5 wt% in the corresponding PLA matrix has a significant positive effect on the cell viability and proliferation, while at higher nanofiller content (10 wt%), insignificant cell proliferation and increased cytotoxicity were confirmed. Furthermore, PLA/TiO2–OA nanocomposite scaffolds were proved as promising materials for drug delivery.  相似文献   

11.
A new star-shaped small molecule (M1) with triphenylamine as electron donor (D) unit and 4,7-dithienyl-5,6-bis(n-octyloxy)[2,1,3]benzoselenadiazole as electron acceptor (A) unit was designed and synthesized. The relationship between the structure and properties was well investigated. M1 shows excellent solubility in common organic solvents, broad absorption (300–650 nm), good optical band gap (E g) (1.96 eV), and proper energy level. Meanwhile, we also investigated the performance of the organic solar cells (OSCs) based on M1 and PC 61 BM or PC 71 BM with different weight ratios, under the illumination of AM 1.5G, 100 mW/cm2. The OSCs based on the blend of M1 and PC 71 BM (1:2, w/w) exhibited the best device performance with a power conversion efficiency of 1.54 %, an open-circuit voltage of 0.91 V, a short-circuit current density of 4.54 mA/cm2, and a fill factor of 37.2 %.  相似文献   

12.
Non linear optical single crystals of l-lysine-iodic acid (LLI) of dimensions upto 24?×?14?×?5 mm3 have been grown successfully by slow evaporation technique from aqueous solution. The crystal structure of the grown material was solved by single crystal X-ray diffraction analysis and it was found that the LLI crystal belongs to monocinic system with space group P21. Functional groups of the grown crystal were identified by Fourier Transform Infrared (FTIR) spectral analysis. The UV–Vis spectral analysis was carried out to measure the transparent range of the LLI crystal which is nearly 85% and the band gap energy is found to be 5.51 eV. Thermal stability and decomposition temperature of LLI crystal was found by means of TGA and DTA analyses. The mechanical behavior of the grown crystal has been employed using Vicker’s micro hardness technique. The Second Harmonic Generation (SHG) efficiency of the crystal was investigated and it was found to be 3.2 times of KDP. The particle size dependent SHG studies of LLI crystals were performed using Nd:YAG laser. The laser damage threshold value of LLI crystal is found to be 8.54 GW/cm2. Dielectric study indicates the reasonable dielectric constant and low dielectric loss of LLI crystal which are essential properties to develop optoelectronic devices. The ac and dc electrical conductivity measurements were carried out at various temperatures. Photoconductivity study exhibits the negative photoconductivity nature of the LLI crystal and the results are discussed for the first time.  相似文献   

13.
Laminar and large-eddy-simulation (LES) calculations with the dynamic Smagorinsky model evaluate the flow and force on an oscillating cylinder of diameter D = 2R in otherwise calm fluid, for β = D 2/νT in the range 197–61400 and Keulegan–Carpenter number K = U m T/D in the range 0.5–8 (ν kinematic viscosity, T oscillation period, U m maximal velocity). Calculations resolving the streakline patterns of the Honji instability exemplify the local flow structures in the cylinder boundary layer (β ~ 197–300, K ~ 2) but show that the drag and inertia force are not affected by the instability. The present force calculations conform with the classical Stokes–Wang solution for all cases below flow separation corresponding to K < 2 (with β < 61400). The LES calculations of flow separation and vortical flow resolve the flow physics containing a large range of motion scales; it is shown that the energy in the temporal turbulent fluctuations (in fixed points) are resolved. Accurate calculation of the flow separation occurring for K > 2 has strong implication for the force on the cylinder. Present calculations of the force coefficients for K up to 4 and β = 11240 are in agreement with experiments by Otter (Appl Ocean Res 12:153–155, 1990). Drag coeffients when flow separation occurs are smaller than found in U-tube experiments. Inertia coefficients show strong decline for large K (up to 8) and moderate β = 1035 but is close to unity for K = 4 and β = 11240. The finest grid has 2.2 × 106 cells, finest radial Δr/R = 0.0002, number of points along the cylinder circumference of 180, Δz/R = 0.044 and a time step of 0.0005T.  相似文献   

14.
In this work, (Ba0.96Ca0.04)(Ti0.92Sn0.08)O3xmol MnO (BCTS–xMn) lead-free piezoelectric ceramics were fabricated by the conventional solid-state technique. The composition dependence (0 ≤ x ≤ 3.0 %) of the microstructure, phase structure, and electrical properties was systematically investigated. An O–T phase structure was obtained in all ceramics, and the sintering behavior of the BCTS ceramics was gradually improved by doping MnO content. In addition, the relationship between poling temperature and piezoelectric activity was discussed. The ceramics with x = 1.5 % sintering at temperature of 1330 °C demonstrated an optimum electrical behavior: d 33 ~ 475 pC/N, k p ~ 50 %, ε r ~ 4060, tanδ ~ 0.4 %, P r ~ 10.3 μC/cm2, E c ~ 1.35 kV/mm, T C ~ 82 °C, strain ~0.114 % and \(d_{33}^{*}\) ~ 525 pm/V. As a result, we achieved a preferable electric performance in BaTiO3-based ceramics with lower sintering temperature, suggesting that the BCTS–xMn material system is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

15.
The ZnO–Nb2O5xTiO2 (1 ≤ x ≤ 2) ceramics were fabricated by reaction-sintering process, and the effects of TiO2 content and sintering temperature on the crystal structure and microwave dielectric properties of the ceramics were investigated. The XRD patterns of the ceramics showed that ZnTiNb2O8 single phase was formed as x ≤ 1.6 and second phase Zn0.17Nb0.33Ti0.5O2 appeared at x ≥ 1.8. With the increase of TiO2 content and sintering temperature, the amount of the second phase Zn0.17Nb0.33Ti0.5O2 increased, resulting in the increase of dielectric constant, decrease of Q × f value, and the temperature coefficient of resonant frequency (τ f ) shifted to a positive value. The optimum microwave dielectric properties were obtained for ZnO–Nb2O5–2TiO2 ceramics sintered at 1075 °C for 5 h: ε r  = 45.3, Q × f = 23,500 GHz, τ f  = +4.5 ppm/°C.  相似文献   

16.
A green and economical microwave–hydrothermal method is employed to prepare carbon dots (CDs) that low-cost dl-malic acid serves as the carbon source and the formamide serves simultaneously as the pyrolysis solvent and carbon source. In the reaction process, neither assistant catalytic treatment nor further surface modification is necessary. We obtain better disperse CDs powders whose quantum yield reaches 25% as well as explain the dehydration condensation reaction mechanism based on the analysis by XPS and FTIR data. The luminescent properties are investigated in detail, and the results reveal that the excitation-dependent feature of as-prepared CDs has the potential for anti-counterfeiting mark and luminescence picture field.  相似文献   

17.
TiO2 foam-like scaffolds with pore size ~300 μm and >95% porosity were fabricated by the foam replication method. A new approach to improve the structural integrity of the as-sintered foams, which exhibit extremely low compression strength, was explored by coating them with poly-(d,l-lactic acid) (PDLLA) or PDLLA/Bioglass® layers. The PDLLA coating was shown to improve the mechanical properties of the scaffold: the compressive strength was increased by a factor of ~7. The composite coating involving Bioglass® particles was shown to impart the rutile TiO2 scaffold with the necessary bioactivity for the intended applications in bone tissue engineering. A dense hydroxyapatite layer formed on the surface of the foams upon immersion in simulated body fluid for 1 week.  相似文献   

18.
Interaction of hydrogen with the intermetallic compound Nd2Fe17 has been studied for the first time by calorimetry using a differential heat conduction calorimeter coupled to a Sieverts apparatus. Hydrogen absorption and desorption reactions were run at 200°C, and two types of data were obtained: p–C–T and ΔH–C–T (where p is the equilibrium hydrogen pressure, C = H/Nd2Fe17, ΔH is the reaction enthalpy, and T is the measurement temperature). The p–C–T curves obtained for the hydrogen absorption and desorption processes have no plateau or two-phase region, in contrast to what is characteristic of the formation of a hydride phase. At the same time, the ΔH(C) curves have a few portions where the enthalpy of reaction between hydrogen and the intermetallic compound remains constant: 0 < C < 2.0, with ΔH abs =–85.05 ± 0.65 kJ/mol H 2; 2.0 < C < 2.7, with ΔH abs =–80.64 ± 1.00 kJ/mol H2; and 1.9 < C < 2.7, with ΔH des = 76.48 ± 0.85 kJ/mol H2. The data obtained in this study suggest that positions 9e and 18g in the intermetallic compound are occupied by hydrogen in a particular order.  相似文献   

19.
Photo-induced treatment of l-alanine single crystals grown by slow evaporation method at an ambient temperature was performed using a 25 ps Nd:YAG pulsed laser in the presence of an external acoustic filed. The changes of the absorption were studied for the wavelength 265 nm near the energy band gap edge at acoustical power density varying within 4–6 W/cm2. The observed absorption changes indicate that the external optical electric field strengths and acoustical power densities may be efficient parameters for the characterization of photo-optical and acousto-optical treatment of the samples. From the X-ray diffraction data we have optimized the atomic positions assuming that force on the atoms is around 1 mRy/au. These are used to calculate the electronic structure and the chemical bonding for the amino acid l-alanine single crystals. The calculated electronic band structure and densities of states confirms the experimental results that this compound possesses a relatively large energy band gap. The upper valence band has its maximum at the Z point of the Brillouin zone while the conduction band minimum is located at Γ point in the zone center, resulting in an indirect energy band gap. The electronic energy gap is equal to 4.19 eV within a framework of the used local density approximation and 4.54 eV with the Engel–Vosko generalized gradient approximation as the exchange correlation potential. This is in an agreement with our experimentally measured energy band gap ~4.67 eV. The existence of O-p character in the upper valence band has a significant consequence for the optical band gap. From our calculated electron charge density distribution, we obtain a space electron charge density distribution in the average unit cell of the crystal. The chemical bonding features of l-alanine amino acid were analyzed.  相似文献   

20.
Novel biosorbent, alkaline Lignin-graft-poly(acrylic acid) (AL-g-PAA), was synthesized by radical graft copolymerization. The molecular structure was confirmed by 1H-NMR and thermogravimetric analysis. Taking the Cu(II) ion biosorption as standard, the optimal conditions of the grafting reaction (0.50 g monomer amount/g AL; 0.20 g initiator/g AL; 0.05 g crosslinker/g AL; reaction at 80 °C for 10 min) were selected from the orthogonal tests. Biosorption studies for eliminating Cu(II) and Cd(II) were conducted at different pHs and temperatures to detect kinetic and equilibrium parameters. The biosorption of these two metal ions followed pseudo-second-order rate kinetics and increased with increasing temperature. The biosorption isotherm processes were fitted better to Langmuir model. The maximal biosorption capacities of AL-g-PAA at 25 °C were 0.75 mmol/g (Cu(II)) and 0.68 mmol/g (Cd(II)). Using the biomass waste, lignin, to prepare biosorbent will exert positive effects on environmental and economic sustainability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号