首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crofton weed was converted into a high-quality activated carbon (CWAC) via microwave-induced CO2 physical activation. The operational variables including activation temperature, activation duration and CO2 flow rate on the adsorption capability and activated carbon yield were identified. Additionally the surface characteristics of CWAC were characterized by nitrogen adsorption isotherms, FTIR and SEM. The operating variables were optimized utilizing the response surface methodology and were identified to be an activation temperature of 980 °C, an activation duration of 90 min and a CO2 flow rate of 300 ml/min with a iodine adsorption capacity of 972 mg/g and yield of 18.03%. The key parameters that characterize quality of the porous carbon such as the BET surface area, total pore volume and average pore diameter were estimated to be 1036 m2/g, 0.71 ml/g and 2.75 nm, respectively. The findings strongly support the feasibility of microwave heating for preparation of high surface area porous carbon from Crofton weed via CO2 activation.  相似文献   

2.
Carbide-derived carbon (CDC) monoliths (DUT-38) with a distinctive macropore network are physically activated using carbon dioxide as oxidizing agent. This procedure is carried out in a temperature range between 850 and 975 °C with durations ranging from 2 to 6 h. Resulting materials show significantly increased specific surface areas as high as 3100 m2/g and total (micro/meso) pore volumes of more than 1.9 cm3/g. The methane (214 mg/g at 80 bar/25 °C), hydrogen (55.6 mg/g at 40 bar/−196 °C), and n-butane (860 mg/g at 77 vol.%/25 °C) storage capacities of the activated CDCs are significantly higher as compared to the non-activated reference material. Moreover, carbon dioxide activation is a suitable method for the removal of metal chlorides and chlorine residuals adsorbed in the pores of CDC after high temperature chlorination. The activation does not influence the hydrophobic surface properties of the CDCs as determined by water adsorption experiments. The macropore network and the monolithic shape of the starting materials can be fully preserved during the activation procedure. n-Butane breakthrough studies demonstrate the materials applicability as an efficient hydrophobic filter material by combining excellent materials transport with some of the highest capacity values that have ever been reported for CDCs.  相似文献   

3.
The yield and adsorption uptake of optimized paper sludge activated carbon (PSAC) prepared using potassium fluoride as alternative chemical activation agent was investigated. The PSAC was functionalized with ethylenediamine (FPSAC) and both adsorbents were used for single and binary adsorption of Reactive orange 16 (RO16) and Reactive blue 19 (RB19). Effect of pH on the adsorption process, equilibrium, kinetics, isotherm and thermodynamic studies were carried out. Optimum PSAC preparation parameters were: activation temperature, X1 = 810 °C; activation time, X2 = 105 min; and impregnation ratio, X3 = 0.95 which gave adsorption uptake of 178 and 158 mg/g for RO16 and RB19, respectively.  相似文献   

4.
Fig sawdust was used as a precursor for the production of activated carbon by chemical activation with H3PO4. The developed Fig sawdust activated carbon (FSAC) was used as a biosorbent for the removal of Pb(II) from aqueous solution. Highest adsorption of Pb(II) (95.8%) was found at pH 4. Equilibrium data fitted very well with the Langmuir isotherm model. Maximum adsorption capacity was determined 80.645 mg g−1 at pH 4. Kinetic studies demonstrated that the adsorption followed a pseudo second order kinetics model. The negative value of ΔG° confirmed the feasibility and spontaneity of FSAC for Pb(II) adsorption.  相似文献   

5.
NO and SO2 can be eliminated simultaneously by [Fe(II)EDTA]2? solution with a pH range of 5.6–8.0 at 25–80 °C. Activated carbon is used to catalyze the regeneration of [Fe(II)EDTA]2?. In this paper, KOH solution has been utilized to modify the carbon to improve its catalytic capability. Experimental results show that the optimal modification factors are as follow: KOH concentration 6.0 mol l?1, impregnation time 9 h, activation temperature 700 °C and activation time 4 h. After KOH modification, the surface area of activated carbon decreases. But its basicity is enhanced, which plays an important role in improving the catalytic characteristics of activated carbon in the reduction of [Fe(III)EDTA]?. The experimental results demonstrate that the activated carbon modified by concentrated KOH solution can get a higher NO removal efficiency than the original activated carbon.  相似文献   

6.
A high-surface-area activated carbon was prepared by chemical activation of Glycyrrhiza glabra residue with ZnCl2 as active agent. Then, the adsorption behavior of Pb(II) and Ni(II) ion onto produced activated carbon has been studied. The experimental data were fitted to various isotherm models. According to Langmuir model, the maximum adsorption capacity of Pb(II) and Ni(II) ions were found to be 200 and 166.7 mg g−1, respectively, at room temperature. Kinetic studies showed the adsorption process followed pseudo second-order rate model. High values of intra-particle rate constants calculated shows the high tendency of activated carbon for removal of Pb(II) and Ni(II) ions.  相似文献   

7.
Several million tonnes of oil sands coke are generated each year in Alberta, Canada as a by-product of bitumen upgrading. Due to its high carbon content, oil sands coke can be a suitable precursor for the preparation of activated carbon. In this study, delayed and fluid oil sands coke were physically activated in a muffle furnace under select conditions of activation time (2–6 h), temperature (800–900 °C), steam rate (0.3–0.5 mL/min), and activation atmosphere (CO2, CO2 + steam, and N2 + steam). The activated products were characterized using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, nitrogen adsorption, iodine and methylene blue tests. An increase in activation time and temperature resulted in higher surface areas in both delayed and fluid coke due to an enhanced etching of pores. An increase in steam rate led to the production of the highest specific surface area (577 m2/g) and iodine number (670 mg/g) within delayed coke; whereas, a lower steam rate resulted in the production of the highest specific surface area (533 m2/g) and iodine number (530 mg/g) in activated fluid coke samples.  相似文献   

8.
In this study a green approach described for the synthesis of copper sulfide nanoparticles loaded on activated carbon (CuS-NP-AC) and usability of it for the removal of reactive orange 12 (RO-12). This material was characterized using instruments such as scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of variables were optimized using Principal component analysis-artificial neural network (PCA-ANN). Fitting the experimental equilibrium data shows the suitability of the Langmuir isotherm. The small amount of proposed adsorbent (0.017 g) is applicable for successful removal of RO-12 (RE > 95%) in short time (31.09 min) with high adsorption capacity (96.9 mg g−1)  相似文献   

9.
In this work, we examine the use of the amidoxime functional group grafted onto a hierarchical porous carbon framework for the selective capture and removal of carbon dioxide from combustion streams. Measured CO2/N2 ideal selectivity values for the amidoxime-grafted carbon were significantly higher than the pristine porous carbon with improvements of 65%. Though the overall CO2 capacity decreased slightly for the activated carbon from 4.97 mmol g−1 to 4.24 mmol g−1 after surface modification due to a reduction in the total surface area, the isosteric heats of adsorption increased after amidoxime incorporation indicating an increased interaction of CO2 with the sorbent. Total capacity was reproducible and stable after multiple adsorption/desorption cycles with no loss of capacity suggesting that modification with the amidoxime group is a potential method to enhance carbon capture.  相似文献   

10.
S-doped microporous carbon materials were synthesized by the chemical activation of a reduced-graphene-oxide/poly-thiophene material. The material displayed a large CO2 adsorption capacity of 4.5 mmol g−1 at 298 K and 1 atm, as well as an impressive CO2 adsorption selectivity over N2, CH4 and H2. The material was shown to exhibit a stable recycling adsorption capacity of 4.0 mmol g−1. The synthesized material showed a maximum specific surface area of 1567 m2 g−1 and an optimal CO2 adsorption pore size of 0.6 nm. The microporosity, surface area and oxidized S content of the material were found to be the determining factors for CO2 adsorption. These properties show that the as synthesized S-doped microporous carbon material can be more effective than similarly prepared N-doped microporous carbons in CO2 capture.  相似文献   

11.
Porous carbon nanofibers (CNFs) derived from graphene oxide (GO) were prepared from the carbonization of electrospun polyacrylonitrile nanofibers with up to 15 wt.% GO at 1200 °C, followed by a low-temperature activation. The activated CNFs with reduced GOs (r-GO) revealed a specific surface area and adsorption capacity of 631 m2/g and 191.2 F/g, respectively, which are significantly higher than those of pure CNFs (16 m2/g and 3.1 F/g). It is believed that rough interfaces between r-GO and CNFs introduce oxygen pathways during activation, help to produce large amounts of all types of pores compared to pure activated CNFs.  相似文献   

12.
In response to the recent focus on reducing carbon dioxide emission, the preparation and characterization of organically functionalized materials for use in carbon capture have received considerable attention. In this paper the synthesis of amine modified layered double hydroxides (LDHs) via an exfoliation and grafting synthetic route is reported. The materials were characterized by elemental analysis (EA), powder x-ray diffraction (PXRD), diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) and thermogravimetric analysis (TGA). Adsorption of carbon dioxide on modified layered double hydroxides was investigated by TGA at 25–80 °C. 3-[2-(2-Aminoethylamino) ethylamino]propyl-trimethoxysilane modified MgAl LDH showed a maximum CO2 adsorption capacity of 1.76 mmol g?1 at 80 °C. The influence of primary and secondary amines on carbon dioxide adsorption is discussed. The carbon dioxide adsorption isotherms presented were closely fitted to the Avrami kinetic model.  相似文献   

13.
In this research, a novel adsorbent, zinc oxide nanoparticle loaded on activated carbon (ZnO-NP-AC) was synthesized by a simple, low cost and efficient procedure. Subsequently, this novel material was characterizated and identified by different techniques such as Brunauer, Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) analysis. Unique properties such as high surface area (>603 m2/g) and low pore size (<61 Å) and average particle size lower than 100 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal of MG by ZnO-NP-AC was attained following searching effect of variables such as adsorbent dosage, initial dye concentration and pH. Optimum values were set as pH of 7.0, 0.015 g of ZnO-NP-AC at removal time of 15 min. Kinetic studies at various adsorbent dosage and initial MG concentration show that maximum MG removal was achieved within 15 min of the start of every experiment at most conditions. The adsorption of MG follows the pseudo-second-order rate equation in addition to interparticle diffusion model (with removal more than 95%) at all conditions. Equilibrium data fitted well with the Langmuir model at all amount of adsorbent, while maximum adsorption capacity was 322.58 mg g−1 for 0.005 g of ZnO-NP-AC.  相似文献   

14.
The aim of this research was to analyze and model the combined effect of pressure and temperature upon Aspergillus ochraceus spores exposed to high pressure carbon dioxide (HPCD) treatment and to estimate the kinetic parameters. Lately, many empirical or semi-empirical mathematical models were presented and discussed for different microorganisms, mainly bacteria, demonstrating an increased need for tools able to quantify the parameters of the microbial inactivation. A. ocharaceus HPCD inactivation was adequately described by first order reaction kinetics and a synergic effect of pressure and temperature was noticed for the experimental range where pressure varied from 5.4 to 7.0 MPa and temperature varied from 30 to 50 °C. The decimal reduction time (D) ranged from 47.07 min at 5.4 MPa and 30 °C to 5.04 min at 7.0 MPa and 50 °C. In this study three mathematical models were evaluated in order to find the best one that describes accurately the influence of pressure and temperature on the studied microbial response. An empirical exponential equation, that described pressure and temperature influence in the form of a polynomial equation, was found to best describe the dependence of A. ochraceus HPCD inactivation in the range 5.4–7.0 MPa and 30–50 °C.This work adds insight to moulds inactivation at the already existing body of knowledge on bacteria inactivation with HPCD and provides support to potential industrial applications of the minimal–thermal methods that combine high pressure and mild temperature with carbon dioxide for different food matrixes.  相似文献   

15.
The effects of variables were modeled using multiple linear regressions (MLR) and artificial neural network (ANN) and the variables were optimized by imperialist competitive algorithm (ICA). Comparison of the results obtained using introduced models indicated the ANN model is better than the MLR model for the prediction of sunset yellow removal using zinc oxide nanoparticles-activated carbon. The coefficient of determination (R2) and mean squared error (MSE) for the optimal ANN model with 9 neurons at hidden layer were obtained to be 0.9782 and 0.0013, respectively. A nano-scale adsorbents namely as Zn(OH)2 was synthesized and subsequently loaded with AC. Then, this new material efficiently applied for sunset yellow (SY) removal, from aqueous solutions in batch process. Firstly the adsorbent were characterized and identified by XRD, FESEM and BET. Unique properties such as high surface area (>1308 m2/g) and low pore size (<20 Å) and average particle size lower than 45.8 Å in addition to intrinsic properties of nano-scale material high surface reactive atom and the presence of various functional groups make it possible for efficient removal of (SY). The effects of adsorbent dose, pH, initial SY concentration and contact time were optimized. Fitting the experimental data of adsorption over time in the range of 30 min to various models show the suitability of second-order and intraparticle diffusion models for the prediction of removal rate and their parameters (R2 > 0.999). The factors controlling adsorption process were also calculated and discussed. Equilibrium data fitted well with the Langmuir model at all amount of adsorbent with maximum adsorption capacity of 158.7 mg g−1.  相似文献   

16.
The influences of heat-treatment temperature and activation time on the properties of TiO2 supported on spherical activated carbon (TiO2/SAC) were investigated. Nano-sized TiO2 was dispersed on the spherical activated carbon with the size of 10–30 nm. Some anatase phase of TiO2 was transformed to rutile phase of TiO2 with an increase of heat-treatment temperature. All of the TiO2/SAC photocatalysts had microporous structure, with the mesopore volume increasing over an activation time of 6 h. The TiO2/SAC photocatalysts obtained at activation times of 6 h and 9 h were observed synergistic effects between adsorption and photocatalysis in the removal of humic acid.  相似文献   

17.
Cadmium hydroxide nanowires loaded on activated carbon (Cd(OH)2-NW-AC) was applied for removal of malachite green (MG) and sunset yellow (SY) in single and binary component systems. This novel material was characterized and identified by different techniques such as Brunauer, Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis. Unique properties such as high surface area (>1271 m2 g−1) and low pore size (<35 Å) and average particle size lower than 50 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of these two dyes. In the single component system in this study, maximum adsorption capacity of 80.6 for SY and 19.0 mg g−1 for MG at 25 °C was reported. The Langmuir model had very well fit with the experimental data (R2 > 0.996). A better agreement between the adsorption equilibrium data and mono-component Langmuir isotherm model was found. The kinetics of adsorption for single and binary mixture solutions at different initial dye concentrations were evaluated by the nonlinear first-order and second-order models. The second-order kinetic model had very well fit with the dynamical adsorption behavior of a single dye for lower and higher initial dye concentrations. SY and MG without spectra overlapping were chosen and analyzed with high accuracy in binary solutions. The effect of multi-solute systems on the adsorption capacity was investigated. The isotherm constants for SY and MG were also calculated in binary component systems at concentrations within moderate ranges, the Langmuir isotherm model satisfactorily predicted multi-component adsorption equilibrium data. The competitive adsorption favored the SY in the A mixture solution (both SY and MG concentration at 10 mg L−1) and B mixture solution (25 mg L−1 of SY and 10 mg L−1 of MG). Also, in both cases, kinetic data was fairly described by two-step diffusion model. An endothermic and spontaneous nature for the adsorption of the dyes studied were shown from thermodynamic parameters in single and binary component systems.  相似文献   

18.
In this work several samples of Quercus agrifolia activated carbon, the porous structure of which was nanostructured by chemical activation with NaOH and KOH, were evaluated for hydrogen adsorption at 77 K and atmospheric pressure. Hydrogen adsorption reached values in the order of 2.7 wt.% for KOH activated carbon. The mechanism of formation of the porous nanostructures was found to be the key factor in controlling the hydrogen adsorption capacity of chemically activated carbon.  相似文献   

19.
《Fuel》2006,85(12-13):1803-1810
A non-equilibrium method using fixed bed microreactor was used to measure SO2 adsorption characteristics of chars and activated carbons derived from Saskatchewan lignite. SO2 breakthrough times and profiles were measured using lignite at a variety of temperatures, particle sizes and SO2 concentrations of 75–175 °C; 2–5.6 mm and 1000–5000 ppm, respectively. Adsorption was found to be a strong function of residence time and feed SO2 concentration, a moderate function of particle size and a weak function of temperature. There was a marginal difference in the adsorption capacity between lignite (15 mg SO2/g lignite) and the char obtained from the same starting amount of lignite (26 mg SO2/g char, or 17 mg SO2/g original lignite). Activation of lignite with steam resulted in an activated carbon, which had highest adsorption capacity of 93 mg SO2/g activated carbon.  相似文献   

20.
For the development of efficient solid acid catalysts for the catalytic dehydration of glycerol to acrolein, catalysts made from montmorillonitic clay activated by sulfuric acid were investigated. Montmorillonite was activated in diluted sulfuric acid in the concentration range of 5–40 wt.%. The effects of sulfuric acid treatment on the structure of the montmorillonite were characterized by X-ray diffraction, measurements of acidity, N2 adsorption–desorption isotherms, and Fourier transform infrared spectroscopy. The catalytic behavior of sulfuric acid-activated montmorillonite catalysts in the gas-phase dehydration of glycerol were investigated under varying conditions, including the reaction temperature, the feed rate, and the concentration of glycerol. After montmorillonitic clay was activated by sulfuric acid, the layered structural features of montmorillonite remained nearly intact. Ca2 +-montmorillonite was changed to H+-montmorillonite by ion exchange reaction during activation. The optimal catalytic glycerol dehydration reaction conditions were found to be: temperature at 320 °C, liquid hourly space velocity (LHSV) = 18.5 h 1, concentration of glycerol solution = 10 wt.%, and the flow rate of N2 carrier gas = 10 mL/min. A conversion of 54.2% of glycerol and a yield of 44.9 wt.% acrolein were achieved over the montmorillonite catalyst activated by an aqueous 10 wt.% sulfuric acid solution. The H+ in the interlayer space of acid-activated montmorillonite catalysts played a critical role in the catalytic dehydration of glycerol. The temperature, the LHSV, and the concentration of glycerol affected the performance of the catalysts through their influence on the reaction mechanism, the contact time, and the reaction equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号