首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Degradation of amoxicillin (AMX) by nanolepidocrocite chips/H2O2/UV method as a new photo-Fenton like process was investigated and optimized by response surface methodology (RSM). The optimal conditions were initial AMX concentration of 10 mg l−1 and initial H2O2 concentration of 60 mg l−1 at pH of 2 under UV radiation for 120 min. The general photo-Fenton process mechanism was applied to propose a new kinetic model for AMX degradation. According to this model, the reaction constant between AMX and OH was obtained 4.55 × 105 M−1 s−1. Also, nanolepidocrocite showed good catalytic activity even after four successive degradation cycles.  相似文献   

2.
This study applies UV light irradiation after a low current density electrochemical treatment to degrade reactive dyes to remove wastewater colour. The combination of these two techniques improves the quality of the treated effluent with respect to only an electrochemical treatment. Synthetic dyeing effluents containing a reactive dye (C.I. Reactive Orange 4, C.I. Reactive Black 5 or Procion Navy H-EXL) and Na2SO4 were studied. Ti/Pt oxides electrodes and UV irradiation lamp (6 W, 254 nm maximum emission) were used. Kinetic constants of the UV irradiation step were calculated. The influence of chloride ion at 3 and 6 mA/cm2 was evaluated. Results showed that, with a very small Cl? concentration (in the order of the net water content) the combined techniques provided full decolourization. The possible presence of 25 organic halogenated compounds was studied by gas chromatography–mass spectrophotometry (GCMS). Only four of them were detected after the electrochemical treatment at low intensity, mainly chloroform. Its concentration was found to be highly dependent of the Cl? concentration, being much lower when reducing the amount of chloride ion. In all cases, the chloroform concentration was dramatically reduced by further UV irradiation which destroyed it up to a 75%.  相似文献   

3.
Nowadays, since the underground waters are known as the main source for supplying the drinking water, their pollution to the organic contaminants such as methyl tert-butyl ether (MTBE) is a very significant issue. Therefore, in this study, photocatalytic degradation of MTBE was investigated in the aqueous soloution of Fe-TiO2 nanoparticale under UV irradiation (wavelenght 254 nm) in a batch reactor. The Fe-TiO2 mixed oxides were prepared by sol–gel impregnation method. The samples were characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) and BET specfic surface area. Then, the effect of various operational parameters namely pH, catalyst loading, molar ratio of [H2O2]0/[MTBE]0 and UV light intensity on degradation of aqueous MTBE were evaluated in a batch reactor. The optimal condition to achieve the best degradation for the initial concentration of 75 ppm MTBE was found at pH 7, catalyst concentration 2 g/L, molar ratio of [H2O2]0/[MTBE]0 4, and UV irradiation 24 W. Total degradation of MTBE with initial concentration of 75 ppm was reached in optimal condition after 70 min. In addition, investigations were also carried out to determine the appropriate kinetics of MTBE degradation using UV/Fe-TiO2/H2O2 process in optimal condition.  相似文献   

4.
The removal of metsulfuron methyl (MeS)—a sulfonyl urea herbicide from contaminated water was investigated by advanced oxidation process (AOP) using Fenton method. The optimum dose of Fenton reagent (Fe2+/H2O2) was 10 mg/L Fe2+ and 60 mg/L H2O2 for an initial MeS concentration ([MeS]0) range of 0–80 mg/L. The Fenton process was effective under pH 3. The degradation efficiency of MeS decreased by more than 70% at pH > 3 (pH 4.5 and 7). The initial Fe2+ concentration ([Fe2+]0) in the Fenton reagent affected the degradation efficiency, rate and kinetics. The degradation of MeS at optimum dose of Fenton reagent was more than 95% for [MeS] 0 of 0–40 mg/L and the degradation time was less than 30 min. The determination of residual MeS concentration after Fenton oxidation by UV spectrophotometry was affected by the interferences from Fenton reagent. The estimation of residual MeS concentration after Fenton oxidation by high pressure/performance liquid chromatograph (HPLC) was interference free and represented the actual concentration of MeS and does not include the by-products of Fenton oxidation. The degradation kinetics of MeS was modelled by second order reactions involving 8 rate constants. The two reaction constants directly involving MeS were fitted using the experimental data and the remaining constants were selected from previously reported values. The model fit for MeS and the subsequent prediction of H2O2 were found to be within experimental error tolerances.  相似文献   

5.
The kinetics of the photocatalytic degradation of 2-naphthol has been investigated in aqueous suspensions of titanium dioxide (TiO2) under a variety of conditions, which is essential from application point of view. The degradation was studied using different parameters such as types of TiO2, catalyst concentration, substrate concentration, reaction pH and in the presence of different electron acceptors such as hydrogen peroxide (H2O2), potassium bromate (KBrO3) and potassium persulphate (K2S2O8) besides molecular oxygen. The degradation rates were found to be strongly influenced by all the above parameters. The photocatalyst “Degussa P-25” was found to be more efficient as compared with other photocatalysts. The degradation kinetics fit well to the Langmuir–Hinshelwood rate law. It was found that an optimal concentration of 5 × 10−4 mol/l Ag+ in TiO2 achieved the fastest 2-naphthol degradation under the experimental conditions. However, with the addition of Na+, K+, Mg2+, Ca2+, Zn2+, Co2+ and Ni2+, there are no obvious effects on the reactions. An analysis of total organic carbon (TOC) showed that a complete mineralization of 2-naphthol can be easily achieved. The intermediate products were identified by HPLC–MS technique. A detailed degradation pathway could be proposed.  相似文献   

6.
《Ceramics International》2016,42(11):12594-12605
The present work is focused on studying morphology dependent catalysis of spinel ZnFe2O4 nanostructures. Different morphologies i.e. porous nanorods, nanoparticles, nanoflowers and hollow microspheres were designed hydrothermally. The as prepared nanomaterials were characterized using Fourier Transform Infra-Red (FTIR), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Brunauer–Emmett–Teller (BET) technique and UV–visible spectrophotometer. The results confirmed formation of desired morphologies of cubic spinel ZnFe2O4 with high surface areas (92–138 m2/g) and narrow band gaps (1.76–1.97 eV). It suggested the use of ZnFe2O4 nanostructures as potential visible light photocatalysts. Therefore, the application of synthesized ZnFe2O4 nanostructures was studied in photo-Fenton degradation of dyes. The results indicated shape dependent relationship with photocatalytic activity as the degradation of dyes followed the order porous nanorods>nanoparticles>nanoflowers>hollow microspheres. The role of main active species in the reaction i.e. OH was also confirmed. All the materials exhibited stability and magnetic separability hence could act as potential photo-Fenton catalysts for wastewater treatment.  相似文献   

7.
Micro-molar concentrations of aqueous 17-β-oestradiol were 98% destroyed in 3.5 h by photocatalysis over the titanium dioxide powder immobilised on Ti-6Al-4V alloy. The concentration of oestradiol was determined by HPLC with fluorescence detection. The degradation kinetics were fitted to a Langmuir–Hinshelwood model with k(S) = 4.4 × 10−2 μmol dm−3 min−1 and K(S) = 0.347 dm3 μmol−1. The pseudo-first-order rate constant (1.57 × 10−2 min−1) was in line with the 50% degradation time of 40 min. The apparent quantum yield per electron was φe = 0.41%. The effect of pH on the initial rate of degradation was similar to that reported for phenol.  相似文献   

8.
This investigation evaluates the effectiveness of the UV/S2O82− process in the degradation of polyvinyl alcohol (PVA) in aqueous solutions without adjusting their pH. The effects of UV wavelength and Na2S2O8 dosage on the efficiency of degradation of PVA were examined. The efficiency of degradation of PVA under UV-254 nm exceeded that under UV-365 nm. A larger Na2S2O8 dosage was associated with a higher efficiency of degradation of PVA under UV-254 nm irradiation. However, an excessive Na2S2O8 dosage inhibited the degradation of PVA by the UV-365 nm/S2O82− process. Both UV-254 nm/S2O82− and UV-365 nm/S2O82− processes exhibited pseudo-first-order kinetics. SO4 was detected by performing quenching studies using specific alcohols, revealing that SO4 was found to be the predominant radical in the UV-254 nm/S2O82− process. Additionally, the presence of inorganic anions with various effects inhibited the degradation of PVA by the UV-254 nm/S2O82− process. Complete degradation of PVA (20 mg/L) was achieved within 5 min under UV-254 nm using an Na2S2O8 dosage of 0.12 g/L in the absence of inorganic anions, indicating that UV irradiation to activate S2O82− promotes the degradation of PVA in aqueous solutions without adjusting their pH.  相似文献   

9.
TiO2 mediated photocatalysis can decompose organic micropollutants (e.g., 1,4-dioxane) in water, but the removal of used TiO2 particles is challenging. Although retrofitting enhances the particle separation efficiency, optimizing a coagulation/flocculation process should be most suitable for existing treatment plants. Therefore, the present study investigated the separation characteristics of TiO2 particles added to drinking water treatment processes along with a polyaluminum coagulant. TiO2 photocatalysts were able to achieve significant degradation of 1,4-dioxane (∼100% within 50 min) as well as dissolved organic matter (∼75% within 150 min) at a TiO2 dose of 1.0 g/L under UV irradiation. Although the TiO2 particle separation efficiency was sensitive to G values, maximal removal occurred at a G value of <34 s−1 with a coagulant concentration of >8 mg/L as Al2O3. Sand filters had the capability to remove residual turbid materials and thus, the turbidity of the final product water dropped to as low as 0.1 NTU when the coagulation/flocculation process was preceded. The final effluent quality was comparable to that of a 0.45-μm membrane filter. The post separation of the TiO2 photocatalysts dispersed for emergency water treatment to degrade 1,4-dixoane was successfully achieved with an optimal coagulant dose, proper flocculation, and sand filtration.  相似文献   

10.
Electrochemical degradation of biocide compound, isothiazolin-3-ones, was studied in aqueous medium, with Na2SO4 supporting electrolyte using boron-doped diamond (BDD) anode. The redox response of isothiazolin-3-ones at BDD was examined by cyclic voltammetric study. The degradation of isothiazolin-3-ones and its mineralization trend were monitored by UV–vis spectrophotometric method and total organic carbon (TOC) analyzer, respectively. The effect of operating parameters such as applied current density, biocide concentration, electrolyte pH and nature of supporting electrolytes (Na2SO4, NaNO3 and NaCl) on degradation rate was studied in detail. It was established that the hydroxyl radicals (OH) generated at BDD surface were responsible for the degradation and the mineralization of the biocide contaminant. The rate of degradation was almost independent of electrolyte pH but became faster as the applied current density increased and the biocide concentration decreased. The kinetic studies revealed that the biocide decay follows a pseudo-first-order rate. The apparent rate constant for the oxidation of isothiazolin-3-ones was determined to be 2.65 × 10 4 s 1 at an applied current density of 25 mA cm 2 in the presence of 0.1 mol dm 3 Na2SO4 at pH 6.0. A poor mineralization efficiency was observed in the case of NaCl as supporting electrolyte which cause in-situ generation of chlorine based mediated oxidants such as Cl2 and OCl which have negligible influence in mineralizing the isothiazolin-3-ones compared to peroxodisulfate (S2O82 ) oxidants that formed in the case of Na2SO4. The oxidizing ability of the BDD anode was compared with those of Pt and glassy carbon anodes under similar experimental conditions.  相似文献   

11.
The photocatalytic degradation of three phenolics namely phenol, 4-chlorophenol and 4-nitrophenol were carried out in aerated aqueous suspension of TiO2 irradiated by ultraviolet light. The influence of temperature at optimized pH and TiO2 concentration was studied. The degradation kinetics were somewhat accelerated by increase in temperature in the range 25–45 °C and apparent activation energy was calculated to be 9.68–21.44 kJ mol?1. Thermodynamic parameters of activation were also assessed for the degradation process. Formation of acidic species results in decrease in pH of solution. The appearance and the evolution of main intermediate species like hydroquinone, benzoquinone and catechol during the degradation process were computed by UV–vis spectral analysis.  相似文献   

12.
《Dyes and Pigments》2008,76(3):741-746
The reaction of azo dye complexes ctc-[Ru(α/β-NaiR′)2Cl2] (1) [α/β-NaiR′ = 1-alkyl-2-α/β-(naphthylazo)imidazole, C10H7–NN–C3H2NN(1)–R′, R′ = Me (2), Et (3), Bz (4)] with (NH4)2MoS4 in aqueous MeOH afforded reddish violet colour mixed ligand complexes of the type [(α/β-NaiR′)2Ru(μ-S)2Mo(OH)2] (24). In complexes 24 the terminal MoS bonds of the MoS42− unit become hydroxylated and the molybdenum ion is reduced from the starting MoVI in MoS42− to MoIV in the final product (24). The solution electronic spectra exhibit a strong MLCT band at 550–570 nm in DCM. Cyclic voltammograms show a Ru(III)/Ru(II) couple at 1.10–1.4 V, irreversible Mo(IV)/Mo(V) oxidations in the 1.66–1.72 V range, along with four successive reversible ligand reductions in the range −0.45 to −0.67 V (one electron), −0.82 to −1.12 V (one electron), and −1.44 to −1.90 V (simultaneously two electrons).  相似文献   

13.
Minimum lattice thermal conductivities and mechanical properties of polymorphous MPO4 (M = Al, Ga) are investigated by first principles calculations. The theoretical minimum thermal conductivities are found to be 1.02 W (m K)?1 for α-AlPO4, 1.20 W (m K)?1 for β-AlPO4, 0.87 W (m K)?1 for α-GaPO4 and 0.88 W (m K)?1 for β-GaPO4. The lower thermal conductivities in comparison to YSZ can be attributed to the lattice phonon scattering due to the framework of heterogeneous bonds. In addition, the low shear-to-bulk modulus ratio for both β-AlPO4 (0.38) and β-GaPO4 (0.30) is observed. Our results suggest their applications as light-weight thermal insulator and damage-tolerant/machinable ceramics.  相似文献   

14.
Two inorganic–organic hybrids based on saturated α-Keggin-type germanomolybdates with mixed organic components [H2DAP]2[Cu(PA)2][α-GeMo12O40]·8H2O (1) and [NH4]2[H8L] [Cu(PA)2][α-GeMo12O40]·8H2O (2) (DAP = 1.2-diaminopropane, HPA = 2-picolinic acid, H6L = 1,3-bis[tris(hydroxymethyl)methylamino]propane) have been obtained via the conventional aqueous solution method and structurally characterized by elemental analysis, IR spectra, thermogravimetric (TG) analysis and single-crystal X-ray diffraction. 1 stands for an one-dimensional linear organic–inorganic hybrid germanomolybdate chain constructed from classical Keggin [α-GeMo12O40]4  units supported by [Cu(PA)2] linkers, whereas 2 represents the first hybrid germanomolybdate containing the H6L component and consists of a saturated α-Keggin polyanion [α-GeMo12O40]4 , a diprotonated [H8L]2 + cation, a copper coordination complex [Cu(PA)2], two ammonium cations [NH4]+ and eight lattice water molecules. Furthermore, the electrochemical and electrocatalytic properties of 1 and 2 have also been investigated in detail.  相似文献   

15.
β-Elemene, germacrene A and damascenine were extracted from lady-in-a-mist (Nigella damascena L.) seeds with supercritical carbon dioxide at 10–30 MPa and 40–60 °C. The influence of supercritical fluid extraction (SFE) conditions on the yield and concentration of volatiles in the extract and the extraction kinetics were studied. The extraction yields and the apparent solubility of volatile compounds increased with increasing density of CO2. The highest total yield was obtained at 30 MPa and 40 °C but the selectivity for volatiles was low under these conditions. With respect to both yield of volatiles and their concentration in extract, the best results were at 12 MPa and 40 °C, either with one separator or with additional separator maintained at 5 MPa and 25 °C. The yields of β-elemene, germacrene A and damascenine reached 0.72, 3.31 and 3.65 mg g−1 and their concentration in the extract was 2.62, 12.04 and 13.28 wt.%, respectively. Though the yields of germacrene A and damascenine were by about 20% higher using Soxhlet extraction with hexane than using SFE, their concentration in the extract where fatty oil prevailed was only 1.19 and 1.20 wt.%, respectively. Under the conditions of hydrodistillation, partial conversion of germacrene A to β-elemene occurred and its yield was higher than using the other methods but the composition of volatiles in the SFE extracts better corresponds to the original raw material.  相似文献   

16.
《Ceramics International》2016,42(8):9796-9803
The improved photocatalyst carbon-doped WO3/TiO2 mixed oxide was synthesized in this study using the sol–gel method. The catalyst was thoroughly characterized by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy, N2 adsorption desorption analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic efficiency of the prepared materials was evaluated with respect to the degradation of sodium diclofenac (DCF) in a batch reactor irradiated under simulated solar light. The progress of the degradation process of the drug was evaluated by high-performance liquid chromatography (HPLC), whereas mineralization was monitored by total organic carbon analysis (TOC) and ion chromatography (IC). The results of the photocatalytic evaluation indicated that the modified catalyst with tungsten and carbon (TWC) exhibited higher photocatalytic activity than TiO2 (T) and WO3/TiO2 (TW) in the degradation and mineralization of diclofenac (TWC>TW>T). Complete degradation of diclofenac occurred at 250 kJ m−2 of accumulated energy, whereas 82.4% mineralization at 400 kJ m−2 was achieved using the photocatalytic system WO3/TiO2-C. The improvement in the photocatalytic activity was attributed to the synergistic effect between carbon and WO3 incorporated into the TiO2 structure.  相似文献   

17.
Two new hexaazamacrocyclic nickel(II) complexes with the formula [NiL1(4-nba)2] (1) and [NiL2(sal)2] (2) (L1 = 3,10-dioctyl-1,3,5,8,10,12-hexaazacyclotetradecane, L2 = 3,10-diisobutyl-1,3,5,8,10,12-hexaazacyclotetradecane, 4-nba = p-nitrobenzoate, and sal = salicylate) were synthesized at room temperature. These complexes were characterized by physico-chemical and spectroscopic methods as well as single-crystal X-ray diffraction analysis. The coordination geometry in complexes 1 and 2 exhibit a distorted octahedron around the nickel(II) ion with hexaazamacrocyclic unit in the equatorial positions and two p-nitrobenzoate (or salicylate) anions in the axial positions. The degradation of methyl orange by potassium persulfate (KPS) in the presence of complex 1 (or 2) oxidation system occurred to near completion in 60 min compared to only 55% with KPS alone under UV light irradiation. Thus, both complexes in cooperation with KPS could be an attractive choice for degradation of organic pollutants for environmental remediation.  相似文献   

18.
The main goal of the present study is to prepare a titania membrane with high permeability and photocatalytic activity for environmental applications. In this investigation a mesoporous titania multilayer membrane on alumina substrate is successfully fabricated via the sol–gel processing method. The prepared titania polymeric sol for the membrane top layer has an average particle size of 11.7 nm with a narrow distribution. The resulting TiO2 multilayer membrane exhibits homogeneity with no cracks or pinholes, small pore size (4 nm), large specific surface area (83 m2/g), and small crystallite size (10.3 nm).The permeability and photocatalytic properties of the titania membrane were measured. The photoactivity of the titania membrane was examined to be 41.9% after 9 h UV irradiation based on methyl orange degradation. This measurement indicates high photocatalytic activity per unit mass of the catalyst. Through multilayer coating procedure, the photocatalytic activity of the membrane improved by 60% without sacrificing the membrane permeation. The prepared TiO2 photocatalytic membrane has a great potential in developing high efficient water treatment and reuse systems due to its multifunctional capability such as decomposition of organic pollutants and physical separation of contaminants.  相似文献   

19.
The photocatalytic degradation of a highly hydrophobic and stable organic pollutant, γ-hexachlorocyclohexane (γ-HCH), was performed in aqueous suspended mixture of TiO2-containing catalysts. Unlike most of the organic pollutants, γ-HCH was very stable under the conventional photocatalytic condition with TiO2 (P25). Among various catalysts, TiO2 pillared fluorine mica (Ti-mica) showed highest activity. The effect of preparation method of Ti-mica was also examined. The hydrothermal treatment increased the crystallinity of anatase pillar of Ti-mica, though the treatment at high temperature resulted in a decrease in the surface area and an increase in the pore size. Consequently, Ti-mica treated at lowest temperature (373 K), Ti-mica-373, was the most effective photocatalyst. The catalytic activity of TiO2 and Ti-mica-373 was compared for 13 kinds of organic compounds with various hydrophobicity. Ti-mica-373 showed 5–66 times higher rate than TiO2 for the degradation of hydrophobic organic pollutants (α, β, γ and δ-HCH, trans- and cis-chlordane, DDE, DDD and DDT) of low concentration (10 ppb). In contrast, TiO2 showed higher rate than Ti-mica-373 for the degradations of less hydrophobic compounds (benzonitrile, chlorobenzene, 4-chloroacetophenone and 4-chloronitrobenzene). Over TiO2-mica-373, organic compounds with higher log POW value, i.e. more hydrophobic compounds, were decomposed with higher rate. A positive effect of the fluorine mica support is suggested to be caused by the interaction of hydrophobic reactant with the hydrophobic interlayer surface of pillared-clay.  相似文献   

20.
A new polymorph telluridoindate [In(en)3][In5Te9(en)2] (denoted as β-type, en = ethylenediamine) has been solvothermally synthesized and characterized. The crystal data for the β-type are listed as follows: monoclinic, space group Cc (No. 9), a = 11.642(2), b = 20.421(4), c = 17.577(4) Å, β = 92.20(3)°, V = 4175.7(14) Å3, Z = 4. The β-type contains organic-decorated [In4Te9(en)]6  supertetrahedral cluster and [InTe3(en)]3  tetrahedron, which are interconnected to form an organic-decorated 2-D telluridoindate layer of [In5Te9(en)23 ]n with 9-membered rings. Two relevant conformers of telluridoindates are compared with each other. The β-type indicates absorption edge at 2.23 eV and exhibits photocatalytic activity for degradation of methyl orange (MO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号