首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 369 毫秒
1.
Field runoff plots, 70 x 10 m each, were established on a tropical Alifisol in southwestern Nigeria to monitor water runoff, soil erosion and nutrient loss in water runoff. The non-agroforestry control treatment (A) was established at two levels: plow-till and no-till systems of seedbed preparation. There were two agroforestry systems based on contour hedgerows of (B) Leucaena leucocephala and (C) Gliricidia sepium established at 4-m and 2-m spacings. Field plots were established in 1982 and hydrological measurements were made for uniform maize-cowpea rotation for 12 consecutive growing seasons from 1982 through 1987. Once established hedgerows of Leucaena at 2-m spacing were extremely effective in reducing water runoff and controlling erosion. Runoff, erosion and nutrient losses were generally more from maize grown in the first season than from cowpea grown in the second. Mean seasonal erosion from maize was 4.3, 0.10, 0.57, 0.10, 0.64 and 0.60 t/ha for plow-till, no-till, Leucaena-4m, Leucaena-2m, Gliricidia-2m treatments, respectively. Mean runoff in the first season from treatments listed in the order above was 17.0, 1.3, 4.9, 3.3, 4.3, and 2.4 percent of the rainfall received. There were high losses of Ca and K in water runoff from the plow-till treatment. In contrast to runoff and erosion, losses of bases in water runoff from agroforestry treatments were relatively high, high concentration of bases in runoff was probably due to nutrient recycling by the deep-rooted perennials.  相似文献   

2.
Field experiments were conducted on a tropical Alfisol at Ibadan, Nigeria, to evaluate the effects on soil moisture and crop yields of three agroforestry systems. Effects of agroforestry treatments involving two perennial shrubs (Leucaena leucocephala and Gliricidia sepium), each at 2-m and 4-m row spacings, were compared with no-till and plow-till systems of seedbed preparation. Measurements were made for soil properties, runoff and erosion, nutrient losses in runoff, and crop growth and yield for a uniform maize (Zea mays) and cowpea (Vigna unguiculata) rotation. All of the six plots, each measuring 70 × 10m, were established on a natural slope of about 7%. Alterations in soil properties and effects on crop growth were evaluated for six consecutive years from 1982 through 1987.Seed germination and seedling establishment of Leucaena hedgerows were satisfactory while establishment of Gliricidia from stem cuttings was unsatisfactory. Maize germination and crop stand were normal while that of cowpea were suppressed by both Leucaena and Gliricidia. Maize growth and yield were suppressed only in the vicinity of hedgerows. Maize grain yield in agroforestry systems averaged about 10 percent lower than that of the control. In contrast with maize, agroforestry systems drastically suppressed cowpea grain yield. The average cowpea yield in agroforestry systems was 30 to 50% of the control. Regardless of the mangement system, grain yields declined over time at the rate of 340 and 96 kg ha–1yr–1 for maize and cowpea, respectively.Hedgerows of Leucaena and Gliricidia acted as windbreaks. Consequently, soil moisture content in the top 0–5 cm layer in agroforestry systems was generally higher than that in the control during both wet and dry seasons.  相似文献   

3.
Lack of empirical data on the effects of the taungya system on establishment and early growth of softwood plantations have partly contributed to controversial decisions regarding the continued suitability of the system for plantation establishment in Kenya. This study examined effectiveness of taungya systems of forest plantation establishment using Cupressus lusitanica and Pinus patula trees with Zea mays (maize) as a test intercrop on two contrasting site types (deep and shallow soils) in Mt. Elgon forest, western Kenya . Four treatments were evaluated in each site: trees with or without weed control, trees intercropped with maize, and sole maize. Results showed that tree survival, growth and nutrient uptake, and maize growth and yield were higher in the deep soil site than the shallow site. The t aungya system improved tree survival and growth, effects being greater in the deep than the shallow soil site. Both Cupressus lusitanica and Pinus patula trees had the same effects on maize growth and yield, reducing maize growth by 41–48% in the deep soil sites, and by 16–26% in the shallow site. Vector nutrient analysis and vector competition analysis of the treatment effects on growth and nutrient uptake of the trees and the maize crop suggested competition for N on the deep soils, but competition for K and P on the shallow soils. The study has demonstrated the applicability of graphical vector competition analysis in diagnosing tree–crop interactions in agroforestry.  相似文献   

4.
This study tested the hypothesis that incorporation of green leaf manure (GLM) from leguminous trees into agroforestry systems may provide a substitute for inorganic N fertilisers to enhance crop growth and yield. Temporal and spatial changes in soil nitrogen availability and use were monitored for various cropping systems in southern Malawi. These included Gliricidia sepium (Jacq.) Walp. trees intercropped with maize (Zea mays L.), with and without pigeonpea (Cajanus cajan L.), sole maize, sole pigeonpea, sole gliricidia and a maize + pigeonpea intercrop. Soil mineral N was determined before and during the 1997/1998, 1998/1999 and 1999/2000 cropping seasons. Total soil mineral N content (NO3 + NH4+) was greatest in the agroforestry systems (p<0.01). Pre-season soil mineral N content in the 0–20 cm horizon was greater in treatments containing trees (≤85 kg N ha−1) than in those without (<60 kg ha−1; p<0.01); however, soil mineral N content declined rapidly during the cropping season. Uptake of N was substantially greater in the agroforestry systems (200–270 kg N ha−1) than in the maize + pigeonpea and sole maize treatments (40–95 kg N ha−1; p<001). Accumulation of N by maize was greater in the agroforestry systems than in sole maize and maize + pigeonpea (p<0.01); grain accounted for 55% of N uptake by maize in the agroforestry systems, compared to 41–47% in sole maize and maize + pigeonpea. The agroforestry systems enhanced soil fertility because mineralisation of the applied GLM increased pre-season soil mineral N content. However, this could not be fully utilised as soil N declined rapidly at a time when maize was too small to act as a major sink for N. Methods for reducing losses of mineral N released from GLM are therefore required to enhance N availability during the later stages of the season when crop requirements are greatest. Soil mineral N levels and maize yields were similar in the gliricidia + maize and gliricidia + maize + pigeonpea treatments, implying that addition of pigeonpea to the tree-based system provided no additional improvement in soil fertility.  相似文献   

5.
This study assessed the use of agroforestry to improve soil nutrient properties in plantations containing Ilex paraguariensis St. Hilaire (yerba mate). Intercropping within tree plantation systems is widely practiced by farmers around the World, but the influence of different species combinations on system performance still requires further investigation. I. paraguariensis is a major South American crop commonly cultivated in intensive monocultures on low activity clay soils, which are highly prone to nutrient deficiencies. Study plots were established in 20 plantations in Misiones, Argentina. These involved two species combinations (I. paraguariensis monoculture and I. paraguariensis intercropped with the native tree species Araucaria angustifolia) and two age classes (30 and 50 years old). Chemical soil samples were analysed to determine Ca, Mg, K, P, N, C and Al concentrations, effective CEC (eCEC) and pH at two soil depths (0–5 cm and 5–10 cm). In the younger plantations, the agroforestry sites had lower nutrient levels than I. paraguariensis monoculture sites. However, the monoculture plantations were more susceptible than agroforestry sites to a decline in soil nutrient status over time, particularly with respect to Ca, eCEC, N and C for both soil depths. P concentrations were below detection limits for all sites, potentially reflecting the high P-fixing capacity of the kaolinic soils of this region. While agroforestry systems may be better at maintaining soil quality over time, significant growth increase of I. paraguariensis was apparent only for the monoculture sites.  相似文献   

6.
北京山地森林的土壤养分状况   总被引:10,自引:0,他引:10  
森林土壤是维持林木健康生长的基质,其肥力特征影响并控制着林木的健康状态(Fisher et al.,2000)。森林退化与土壤肥力的衰退有密切的联系(La Mannaetal.,2004)。因此,对森林土壤特征的了解,可及时为森林健康经营提供依据。随着生态环境问题的日益突出以及森林健康理念的发展,世  相似文献   

7.
Nutrient concentrations in plant and soil and their rates of cycling in poplar (Populus deltoides)-based agroforestry systems were studied at Pusa, Bihar, India. The nutrient concentrations in the standing biomass of the crop were more than those in tree, whereas the nutrient contents showed the reverse trend. Soil, litter and vegetation accounted for 80.3–99.5, 0.1–5.0 and 0.4–14.7%, respectively, of the total nutrients in the system. Considerable reduction (40–54%) in concentration of nutrients in leaves occurred during senescence. The uptake of nutrients by vegetation, and also by different components with and without adjustment for internal recycling, were calculated separately. Annual transfer of litter nutrient to the soil by vegetation was 37.3–146.2 N, 5.6–17.9 P and 25.0–66.3 K kg ha−1 year−1 in young (3-year-old) and mature (9-year-old) plantations. Turnover rate and time for different nutrients ranged between 0.86–0.99 year−1 and 1.01–1.16 years, respectively. Compartmental models for nutrient dynamics have been developed to represent the distribution of nutrient contents and net annual fluxes within the system. This study shows that the poplar-based agroforestry system can be sustainable in terms of soil nutrient status.  相似文献   

8.
We established hedges/barriers of calliandra (Calliandra calothyrsus Meissner), leucaena (Leucaena trichandra (Zucc.) Urban)) and napier grass (Pennisetum purpureum Schumach) and combination hedges of either calliandra or leucaena with napier grass on slopes exceeding 5% to study the effect of vegetative barriers on productivity of arable steep-lands in central Kenya. Hedges/barriers were pruned regularly and biomass incorporated into the plots. Hedge plots were monitored for soil fertility, soil losses and maize crop yield changes. Inorganic-N concentration in the tree hedge plots was higher than in the control and napier barrier plots after 20 months. Napier grass barriers were the most effective in reducing erosion losses across the two seasons. The effectiveness of napier grass to significantly reduce soil erosion was detectable in one year old napier barriers. Soil loss from all the other one year old vegetative treatments was similar to soil loss from the control. Seventeen month old combination hedge plots recorded lower soil losses than tree hedges of the same age (P = 0.012). Maize crop yields throughout the trial period were high and similar for leguminous and combination hedge plots, but lower in the napier grass and control plots. Overall, we observed that the combination hedges seemed to provide a win-win scenario of reduction in soil erosion combined with improvement of maize crop yields and soil fertility enhancement. We conclude that vegetative hedges have a potential for improving soil productivity in arable steep-lands of the central highlands of Kenya, and that in adoption of vegetative hedges for this purpose there are trade-offs between soil conservation, soil fertility and maize crop yields to be considered. Throughout the text, tree hedges and leguminous hedges are used interchangeably to imply calliandra and leucaena hedges while use of barrier/s to refer to a treatment is restricted to monospecific grass strips  相似文献   

9.
Frequent nutrient removals accompanying wood and crop harvests from rotational woodlot systems may contribute to declining site productivity and sustainability because of soil nutrient depletion. However, selecting for nutrient-efficient tree species may well sustain productivity under this system. To test this hypothesis, a randomized complete block experiment was adopted to assess effects of five tree species on soil nutrients status, nutrient use efficiency and wood yield in semi-arid Tanzania. After 5 years rotation, top soils under Gliricidia sepium (Jaqua), Acacia polyacantha Willd. and Acacia mangium Willd. were the most fertile with soil organic carbon and exchangeable cation status raised close to those in natural Miombo systems. Soil inorganic N and extractable P levels reached sufficiency levels for subsequent maize culture. Wood productivity in tree fallows averaged three times higher than that of Miombo woodlands indicating the high potential of the woodlot system to supply fuelwood, and consequently relieve harvesting pressures on the natural forests. Acacia crassicarpa A. Cunn. ex Benth. produced the most wood (51 Mg ha−1) at low nutrient “costs” presumably due to high nutrient use efficiency. Wood yield of this species was 42 and 120% greater than that of A. polyacantha and A. nilotica, respectively, but contained comparatively less nutrients (42–60% less for P, K, and Ca). Gliricidia sepium and A. polyacantha returned the largest amount of nutrients through slash at harvests. Of all test species, A. crassicarpa exhibited the most promise to sustain wood production under rotational woodlot systems due to relatively high productivity and low nutrient export at harvest.  相似文献   

10.
Farming Systems developed in Humid Tropical Zones are frequently characterized by a combination of perennial and annual plants, intermixed in complex tree-crop associations. The productive functioning, the agronomic and economic performances, and the sustainability of these crop associations remain poorly understood. To improve the management capacity of these complex agroforestry systems, adequate indicators must be developed and integrated in assessment systems. These may then be used to aid farmers, assisted by their extension agents, in making decisions regarding management practices. The present study focused on the agroforestry systems developed by 38 farmers in the South West Region of Cameroon, which were surveyed for a large set of variables, aiming at formulating a Traditional Agroforestry Performance Indicators System (TAPIS). Analyses of the relationships among indicators in TAPIS allowed an improved understanding of agro-ecological and agro-economic performances in the studied plots, revealed tradeoffs regarding plant stand, income generation, food production, input demands and work requirements; and may contribute to the sustainability assessment of agroforestry systems.  相似文献   

11.
Shade tolerant species response to nutrient additions and light regulation by canopy trees in perennial agroforestry systems has been well documented. However, accelerated early growth, particularly in cocoa-shade systems, may be offset by competition for limited resources on nutrient poor sites. To date, few agroforestry management strategies focus on nutrient manipulation of the shade tree component or strategies for precision nutrient application. Our research objective was to diagnose interactions between nutrient supplied shade trees intercropped with cocoa. We established greenhouse trials in Kwadaso, Ghana cultivating Terminalia superba seedlings with four fertility treatment levels: conventional rate (current practices) under linear additions, and half, full and double conventional rate under exponential additions (steady-state nutrition) to determine maximal growth and nutrient uptake. After 4 months of additions in the nursery, pre-fertilized T. superba seedlings were then out-planted into field trials with cocoa seedlings. After 4 months of intercropping, cocoa associated with half rate exponentially supplied T. superba had significantly larger leaf area, greater leaf number, and higher nutrition (N and P uptake) than cocoa associated with full rate conventionally supplied T. superba. This may be attributed to (1) more favorable light conditions under these taller shade seedlings and (2) the internal use of nutrients associated with exponentially supplied T. superba seedlings, which lowered stress on native soil resources. The latter is corroborated with our findings on soil fertility status. This strategy focused on reducing fertilizer inputs and developing precise plant nutrition technology for on-farm use. Our findings suggest that shade seedlings under steady state nutrition can mitigate early growth competition in the field.  相似文献   

12.
In the central Amazon basin, the effects of secondary vegetation and primary forest on inorganic and organic P and S pools were compared with those of different fruit and timber tree species in a multistrata agroforestry system. The soils (Xanthic Ferralsols) were low in readily available P and S. Fertilizer applications increased the less accessible nutrient pools more than the plant available pools. For example, dilute-acid extractable P increased substantially (from 2 to 76 mg P kg−1), whereas Mehlich P (plant available) increased less (from 3 to 19 mg P kg−1). In contrast, the recalcitrant soil P pools, such as the residual P, did not increase on the short term, but only after more than six years following application. The proportion of less available ester-sulfate S was significantly higher in fertilized sites than in unfertilized sites, in contrast to soluble inorganic sulfate S or carbon-bonded S. The marked increase of successively available soil P and S pools through fertilization was advantageous with respect to the long-term effect of nutrient applications. Soil nutrient availability was not only related to the amount of nutrients applied but was also influenced by tree species. Nutrient return by litterfall and litter quality played an important role in soil P and S dynamics. Incorporation of applied nutrients into successively available organic nutrient pools will decrease potential P fixation and S losses by leaching and increase long-term nutrient availability. Therefore, tree species with rapid above-ground nutrient cycling and high quality litter (such as annato [Bixa orellana] and peach palm [Bactris gasipaes]) should constitute the majority of crops in multistrata agroforestry systems on infertile soils to ensure adequate medium to long term availability of P and S. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Dehesas are extant multi-purpose agroforestry systems that consist of a mosaic of widely-spaced scattered oaks (Quercus ilex L.) combined with crops, pasture or shrubs. We aimed to clarify the role of trees in dehesas of CW Spain focussed on the analysis of tree-understorey interactions. Spatial variability of resources (light, soil moisture and fertility), microclimate, fine roots of both herbaceous plants and trees and forage yield was measured. Additionally, we compared the nutritional and physiological status, growth and acorn production of oaks in cropped (fodder crop), grazed (native grasses) and encroached (woody understorey) dehesa plots. Significant light interception by trees was limited to the close vicinity of the trees, with very low reduction away from them. Both microclimate and soil fertility improved significantly in the trees vicinity, irrespective of soil management. Soil moisture varied very few with distance from the trees, as a result of the extended root system of oaks. Root systems of trees and herbs did not overlap to a great extent. Crop production was higher beneath trees than beyond the trees in unfertilised plots and foliar nutrient content of oaks did not increase significantly with crop fertilisation, indicating that trees and crops hardly compete for nutrients. Moreover, trees benefited from the crop or pasture management: trees featured a significantly improved nutritional and physiological status, a faster growth and a higher fruit productivity than trees growing in encroached or forest plots.  相似文献   

14.
[目的]探讨西南桦人工林对土壤的适应性及土壤养分特征,揭示土壤养分状况与立地生产力的关系,为其造林地选择及人工林养分管理提供参考。[方法]在广西大青山林区西南桦人工林内设置47块600 m2的典型样地,调查常规测树因子,采集土壤样品,测定10项常规土壤化学性质指标;按照土壤养分分级标准评价土壤养分状况,基于立地指数将样地分为高产和低产组,进一步比较分析两组立地间各养分指标的差异性,探讨土壤养分对立地生产力的影响。[结果]表明:广西大青山西南桦人工林地土壤绝大部分为强酸性,有机质、有效N、全N含量中等偏上,有效P甚缺,其它养分含量中等偏下。高产和低产立地间土壤有机质和全K含量均呈极显著差异(P0.01),有效N含量差异显著(P0.05)。[结论]西南桦对于低pH值、低P含量的土壤具有较强的适应性;有机质、全K和有效N含量是影响广西大青山西南桦人工林立地指数的关键土壤养分因子。  相似文献   

15.
The agroforestry systems of cacao (Theobroma cacao) under laurel (Cordia alliodora) and cacao under poro (Erythrina poeppigiana) were studied at CATIE, Turrialba, Costa Rica. An inventory was taken of the organic matter and nutrients (N, P, K, Ca, and Mg) separating the species into their compartments (leaves, branches, trunks and roots). Studies of the litter and of the mineral soil (0–45 cm) yielded these results: Patterns of nutrient accumulation are discussed in relation to the characteristics of these agroforestry systems.  相似文献   

16.
A study on dry matter production and nutrient cycling in agroforestry systems of mandarin grown in association with N2-fixing Albizia and mixed tree species (non-N2-fixing) was carried out in the Sikkim Himalaya. A site with Albizia was referred asAlbizia-mandarin stand and the other site with mixed tree species as mandarin stand. The stand total biomass, net primary productivity and mandarin fruit production was higher under the influence of Albizia. Agronomic yield of crops remained nearly the same in both the stands. Nitrogen and phosphorus concentrations of different components of Albizia were higher than those of mixed tree species, whereas their back translocation from leaf to branch before abscission was lower inAlbizia. The mandarin-based agroforestry is a highly nutrient-exhaustive system evaluated in terms of nutrient exit through the removal of agronomic yield. This system, under the influence of Albizia, was more productive with faster rates of nutrient cycling. Nutrient use efficiency increased under the influence of Albizia, in contrary to the hypothesis that efficiency should decrease with increasing rate of uptake. The poor nutrient conservation of Albizia, and malleability of nutrient cycling under its influence make it an excellent association which promotes higher availability and faster cycling of nutrients.Albizia should be utilised more extensively in the management of mandarin-based agroforestry systems.  相似文献   

17.
In order to assess the possibility of root competition in agroforestry, the vertical distribution of fine roots (< 2 mm in diameter) of five tree species in pure two-year-old stands was compared to that of mature maize.Cassia siamea, Eucalyptus tereticornis, Leucaena leucocephala andProsopis chilensis had a rooting pattern similar to that of maize, i.e. a slow decline in fine root mass from 0–100 cm soil depth.Eucalyptus camaldulensis had its roots evenly distributed down to 100 cm. On an average, the fine root biomass of the tree species was roughly twice as that of the maize. We conclude that the studied tree species are likely to compete with maize and other crops with a similar rooting pattern for nutrients and water.  相似文献   

18.
The palm Euterpe edulis has high ecological and economic importance in Brazil. Currently, this species is being cultivated and managed for spontaneous regeneration in banana plantations. However, there are no data comparing its plantation growth performance to its native forest growth. We evaluated growth and mortality (M) of individuals of E. edulis planted in secondary dense ombrophilous forest and in banana plantations, as well as their relationships with site variables (canopy opening, soil nutrient availability, density of existing E. edulis, and herbivory). Twelve banana plantation sites and 12 sites in secondary dense ombrophilous forests were selected. At each site, 25 young individuals of E. edulis were planted in 2003. Annually until 2008, morphometric, herbivory, and M of the individuals were evaluated. In 2008, canopy and soil variables were measured at each plot. E. edulis growth was five times higher in banana plots compared to forest plots; current annual increment on height reached 38.9 cm in banana plots, compared to 7.3 cm in forest plots. M was relatively low and similar at both sites, presenting an intraspecific density-dependence pattern. Significant correlations were found between morphometric variables, M, and herbivory of E. edulis and canopy and soil variables. Euterpe edulis presented plasticity that allows for its establishment in banana plantations, indicating high potential for management in agroforestry consortia. Such management may be a useful conservation strategy for this and other shade-tolerant species.  相似文献   

19.
The aim of the work was to evaluate soil nutrient concentration at 0–5, 5–10, and 10–20 cm in maize (Zea mays L.) grown in sequence with black oats (Avena strigosa Schreb.) under Leucaena diversifolia alley cropping agroforestry system (AFS) and traditional management system/sole crop (without trees–TS), following a randomized block design. The experiment was carried out at the Brazilian Association of Biodynamic Agriculture, in Botucatu, São Paulo, Brazil. The treatments were: control (C), chemical fertilizer (F), biomass of L. diversifolia alley cropping (B), and biomass of L. diversifolia alley cropping + chemical fertilizer (B+F).

After 2 yr, it was observed that pH, organic matter, and nutrient content had a tendency to show higher values in the treatments biomass+fertilizer, biomass, and fertilizer application, in both systems. Higher values in pH, organic matter, phosphorus, potassium, calcium, magnesium, sum of bases, cation exchange capacity, percentage base saturation, boron, copper, and manganese tended to occur in the agroforestry system.  相似文献   

20.
In order to assess the possibility of root competition in agroforestry, the vertical distribution of fine roots (< 2 mm in diameter) of five tree species in pure two-year-old stands was compared to that of mature maize.Cassia siamea, Eucalyptus tereticornis, Leucaena leucocephala andProsopis chilensis had a rooting pattern similar to that of maize, i.e. a slow decline in fine root mass from 0–100 cm soil depth.Eucalyptus camaldulensis had its roots evenly distributed down to 100 cm. On an average, the fine root biomass of the tree species was roughly twice as that of the maize. We conclude that the studied tree species are likely to compete with maize and other crops with a similar rooting pattern for nutrients and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号