首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Three-dimensional (3D) printing is perceived as an innovative tool for change in tissue engineering and regenerative medicine based on research outcomes on the development of artificial organs and tissues. With advances in such technology, research is underway into 3D-printed artificial scaffolds for tissue recovery and regeneration. In this study, we fabricated artificial scaffolds by coating bone demineralized and decellularized extracellular matrix (bdECM) onto existing 3D-printed polycaprolactone/tricalcium phosphate (PCL/TCP) to enhance osteoconductivity and osteoinductivity. After injecting adipose-derived stem cells (ADSCs) in an aggregate form found to be effective in previous studies, we examined the effects of the scaffold on ossification during mandibular reconstruction in beagle dogs. Ten beagles were divided into two groups: group A (PCL/TCP/bdECM + ADSC injection; n = 5) and group B (PCL/TCP/bdECM; n = 5). The results were analyzed four and eight weeks after intervention. Computed tomography (CT) findings showed that group A had more diffuse osteoblast tissue than group B. Evidence of infection or immune rejection was not detected following histological examination. Goldner trichrome (G/T) staining revealed rich ossification in scaffold pores. ColI, Osteocalcin, and Runx2 gene expressions were determined using real-time polymerase chain reaction. Group A showed greater expression of these genes. Through Western blotting, group A showed a greater expression of genes that encode ColI, Osteocalcin, and Runx2 proteins. In conclusion, intervention group A, in which the beagles received the additional ADSC injection together with the 3D-printed PCL/TCP coated with bdECM, showed improved mandibular ossification in and around the pores of the scaffold.  相似文献   

2.
Our aim was to investigate the bone regeneration capacity of powder-type biphasic ceramic scaffold (BCP powder), block-type BCP (BCP block), and collagen-added block-type BCP (BCP collagen) with different concentrations of recombinant human bone morphogenetic protein 2 (rhBMP-2) in an animal model. Four rabbits were assigned to each of the following groups: no graft + rhBMP-2 (0.1/0.2 mg/mL), BCP powder + rhBMP-2 (0.1/0.2 mg/mL), BCP block + rhBMP-2 (0.1/0.2 mg/mL), and BCP collagen + rhBMP-2 (0.1/0.2 mg/mL), i.e., a total of 32 rabbits. Polycarbonate tubes (Φ 7 mm × 5 mm) for supporting scaffolds were fixed into a 7 mm round border. Subsequently, 0.1 mL of rhBMP-2 solutions with different concentrations was injected into the tubes. Both radiological and histomorphometric analyses showed that osteogenesis was not enhanced by increasing the concentration of rhBMP-2 in all groups at both 3 and 6 weeks. Radiological analysis showed that bone formation was higher in the BCP collagen group than in the BCP powder and BCP block groups at both rhBMP-2 concentrations at 3 weeks. rhBMP-2 enhanced bone formation; however, as the concentration increased, bone formation could not be enhanced infinitely. Collagen-added alloplastic graft material may be useful for mediating rapid bone formation in initial stages.  相似文献   

3.
《Ceramics International》2022,48(16):22647-22663
Calcium phosphates (apatites) are considered as a research frontier for bone regeneration applications by virtue of similarity to the mineral constituent of bone, suitable biocompatibility and remarkable osteogenesis ability. In this regard, the biodegradability and mechanical properties of monophasic apatites, typically hydroxyapatite (HA) and tricalcium phosphate (TCP), are imperfect and do not fulfill some requirements. To overcome these drawbacks, 3D porous HA/TCP composite scaffolds prepared by conventional and more recently, 3D printing techniques have shown to be promising since their bioperformance is adjustable by the HA/TCP ratio and pores. Despite the publication of several reviews on either 3D porous scaffolds or biphasic calcium phosphates (BCPs), no review paper has to our knowledge focused on 3D porous BCP scaffolds. This paper comprehensively reviews the production methods, properties, applications and modification approaches of 3D porous HA/TCP composite scaffolds for the first time. In addition, new insights are introduced towards developing HA/TCP scaffolds with more impressive bioperformance for further tissue engineering applications, including those with different interior and exterior frameworks, patient-specific specifications and drugs (or other biological factors) loading.  相似文献   

4.
应用骨形成蛋白与胶原膜复合物修复大鼠颅骨缺损   总被引:4,自引:0,他引:4  
目的探讨骨形成蛋白(BMP)与胶原膜复合物(复合膜)修复大鼠颅骨缺损的效果。方法将BMP与胶原膜复合,在大鼠颅骨制备骨缺损,分别采用双侧覆盖复合膜、外侧覆盖复合膜进行治疗,以外侧覆盖胶原膜作为平行对照,并设空白对照。于术后2、4、6周,取标本进行X线检查及组织学观察。结果 两个覆盖复合膜组的缺损成骨面积百分比明显高于覆盖胶原膜的平行对照组(P<0.01)。术后4、6周,双侧覆盖复合膜组的成骨面积百分比明显大于单侧覆盖复合膜组(P<0.05)。双侧覆盖复合膜组的缺损术6周后已达骨性愈合。结论BMP与胶原膜复合既具有机械性阻挡作用,又具有骨诱导性,能加速骨缺损愈合。  相似文献   

5.
This study evaluated the new bone formation potential of micro–macro biphasic calcium phosphate (MBCP) and Bio-Oss grafting materials with and without dental pulp-derived mesenchymal stem cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in a rabbit calvarial bone defect model. The surface structure of the grafting materials was evaluated using a scanning electron microscope (SEM). The multipotent differentiation characteristics of the DPSCs and BMSCs were assessed. Four circular bone defects were created in the calvarium of 24 rabbits and randomly allocated to eight experimental groups: empty control, MBCP, MBCP+DPSCs, MBCP+BMSCs, Bio-Oss+DPSCs, Bio-Oss+BMSCs, and autogenous bone. A three-dimensional analysis of the new bone formation was performed using micro-computed tomography (micro-CT) and a histological study after 2, 4, and 8 weeks of healing. Homogenously porous structures were observed in both grafting materials. The BMSCs revealed higher osteogenic differentiation capacities, whereas the DPSCs exhibited higher colony-forming units. The micro-CT and histological analysis findings for the new bone formation were consistent. In general, the empty control showed the lowest bone regeneration capacity throughout the experimental period. By contrast, the percentage of new bone formation was the highest in the autogenous bone group after 2 (39.4% ± 4.7%) and 4 weeks (49.7% ± 1.5%) of healing (p < 0.05). MBCP and Bio-Oss could provide osteoconductive support and prevent the collapse of the defect space for new bone formation. In addition, more osteoblastic cells lining the surface of the newly formed bone and bone grafting materials were observed after incorporating the DPSCs and BMSCs. After 8 weeks of healing, the autogenous bone group (54.9% ± 6.1%) showed a higher percentage of new bone formation than the empty control (35.3% ± 0.5%), MBCP (38.3% ± 6.0%), MBCP+DPSC (39.8% ± 5.7%), Bio-Oss (41.3% ± 3.5%), and Bio-Oss+DPSC (42.1% ± 2.7%) groups. Nevertheless, the percentage of new bone formation did not significantly differ between the MBCP+BMSC (47.2% ± 8.3%) and Bio-Oss+BMSC (51.2% ± 9.9%) groups and the autogenous bone group. Our study results demonstrated that autogenous bone is the gold standard. Both the DPSCs and BMSCs enhanced the osteoconductive capacities of MBCP and Bio-Oss. In addition, the efficiency of the BMSCs combined with MBCP and Bio-Oss was comparable to that of the autogenous bone after 8 weeks of healing. These findings provide effective strategies for the improvement of biomaterials and MSC-based bone tissue regeneration.  相似文献   

6.
In this study, we fabricated gelatin/nano-hydroxyapatite/metformin scaffold (GHMS) and compared its effectiveness in bone regeneration with extraction-only, Sinbone, and Bio-Oss Collagen® groups in a critical size rat alveolar bone defect model. GHMS was synthesized by co-precipitating calcium hydroxide and orthophosphoric acid within gelatin solution, incorporating metformin, and cross-linked by microbial transglutaminase. The morphology, characterization, and biocompatibility of scaffold were examined. The in vitro effects of GHMS on osteogenic gene and protein expressions were evaluated. In vivo bone formation was assessed in a critical size rat alveolar bone defect model with micro-computed tomography and histological examination by comparing GHMS with extraction-only, Sinbone, and Bio-Oss Collagen®. The synthesized GHMS had a highly interconnected porous structure with a mean pore size of 81.85 ± 13.8 µm. GHMS exhibited good biocompatibility; promoted ALPL, RUNX2, SP7, BGLAP, SPARC and Col1a1 gene expressions; and upregulated the synthesis of osteogenic proteins, including osteonectin, osteocalcin, and collagen type I. In critical size rat alveolar bone defects, GHMS showed superior bone regeneration compared to extraction-only, Sinbone, and Bio-Oss Collagen® groups as manifested by greater alveolar ridge preservation, while more bone formation with a lower percentage of connective tissue and residual scaffold at the defect sites grafted with GHMS in histological staining. The GHMS presented in this study may be used as a potential bone substitute to regenerate alveolar bone. The good biocompatibility, relatively fast degradation, interconnected pores allowing vascularization, and higher bioactivity properties of the components of the GHMS (gelatin, nHA, and metformin) may contribute to direct osteogenesis.  相似文献   

7.
Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.  相似文献   

8.
The repair of large bone defects remains challenging and often requires graft material due to limited availability of autologous bone. In clinical settings, collagen sponges loaded with excessive amounts of bone morphogenetic protein 2 (rhBMP-2) are occasionally used for the treatment of bone non-unions, increasing the risk of adverse events. Therefore, strategies to reduce rhBMP-2 dosage are desirable. Silk scaffolds show great promise due to their favorable biocompatibility and their utility for various biofabrication methods. For this study, we generated silk scaffolds with axially aligned pores, which were subsequently treated with 10× simulated body fluid (SBF) to generate an apatitic calcium phosphate coating. Using a rat femoral critical sized defect model (CSD) we evaluated if the resulting scaffold allows the reduction of BMP-2 dosage to promote efficient bone repair by providing appropriate guidance cues. Highly porous, anisotropic silk scaffolds were produced, demonstrating good cytocompatibility in vitro and treatment with 10× SBF resulted in efficient surface coating. In vivo, the coated silk scaffolds loaded with a low dose of rhBMP-2 demonstrated significantly improved bone regeneration when compared to the unmineralized scaffold. Overall, our findings show that this simple and cost-efficient technique yields scaffolds that enhance rhBMP-2 mediated bone healing.  相似文献   

9.
(1) Aim: To immunohistochemically evaluate the effect of a volume-stable collagen scaffold (VCMX) on periodontal regeneration. (2) Methods: In eight beagle dogs, acute two-wall intrabony defects were treated with open flap debridement either with VCMX (test) or without (control). After 12 weeks, eight defects out of four animals were processed for paraffin histology and immunohistochemistry. (3) Results: All defects (four test + four control) revealed periodontal regeneration with cementum and bone formation. VCMX remnants were integrated in bone, periodontal ligament (PDL), and cementum. No differences in immunohistochemical labeling patterns were observed between test and control sites. New bone and cementum were labeled for bone sialoprotein, while the regenerated PDL was labeled for periostin and collagen type 1. Cytokeratin-positive epithelial cell rests of Malassez were detected in 50% of the defects. The regenerated PDL demonstrated a larger blood vessel area at the test (14.48% ± 3.52%) than at control sites (8.04% ± 1.85%, p = 0.0007). The number of blood vessels was higher in the regenerated PDL (test + control) compared to the pristine one (p = 0.012). The cell proliferative index was not statistically significantly different in pristine and regenerated PDL. (4) Conclusions: The data suggest a positive effect of VCMX on angiogenesis and an equally high cell turnover in the regenerated and pristine PDL. This VCMX supported periodontal regeneration in intrabony defects.  相似文献   

10.
《Ceramics International》2021,47(18):25425-25439
An optimal performance of bone implants with bioceramic coatings is closely related to the surface modification technology. For the first time, we have evaluated a gas detonation deposition (GDD) approach to obtain biocompatible ceramic coatings based on bioglass (BG) and calcium phosphates on Ti-based alloys as prospective materials towards their application for the development of bone implants. For the production of the coatings, hydroxyapatite (HA), HA metal-substituted (containing Ag+, Cu2+, or Zn2+) and tricalcium phosphate (TCP) were synthesized and characterized. Pure powders and their combination with BG were used to obtain coatings on a Ti–6Al–4V alloy using the developed automatized GDD setup. The microstructure, phase and chemical composition of the produced coatings were studied using XRD, SEM-EDS and Raman spectroscopy. The produced coated materials were evaluated in vivo in Wistar rats to analyze a reparative osteogenesis over a period of 12 weeks. The results regarding the optimization of the GDD method indicate its high productivity, as confirmed by high deposition rates. The highest deposition rate was observed for the coatings obtained from the HA metal-substituted powders. The results revealed a partial transformation of a HA phase to an α-TCP phase during the deposition, with a prevalence of the HA-phase in the coatings. According to the histological evaluation, the reparative osteogenesis occurs through the perimeter of the titanium implants, whereas the regeneration level increases from the 4th to the 12th week. The highest osteointegration level was detected for the implants coated with a biocomposite consisting of BG, HA and TCP. The results of the current study demonstrate an effectiveness of the GDD method to produce biocompatible coatings on Ti-based alloys. This provides excellent prerequisites towards the application and standardization of the GDD technology to manufacture bone implants for bone fixation and defect replacement, as well as the development of dental implants.  相似文献   

11.
李贵龙  王靖  刘昌胜 《化工学报》2015,66(8):3183-3188
骨形态发生蛋白-2(BMP-2)是重要的骨诱导生长因子,是提高骨修复材料活性和临床骨修复效果的有效手段和关键物质。由于BMP-2在体内含量低,依靠从动物体内提取难以满足临床需求。本文研究满足临床需求的BMP-2的制备方法,并评价其生物活性。采用密码子优化方法,并通过进一步更换其中部分核苷酸编码,得到优化的hBMP-2基因的DNA序列,制备大肠杆菌rhBMP-2菌株,通过发酵及工艺优化,获得BMP包涵体,经分离纯化与复性,制备出高纯度的rhBMP-2。测定C2C12细胞的碱性磷酸酶(ALP)活性来表征单倍体和二倍体BMP-2的成骨活性,发现二倍体rhBMP-2的成骨活性明显高于单倍体rhBMP-2,并且随着BMP-2浓度增加,碱性磷酸酶活性上升。体内动物异位成骨实验发现rhBMP-2肌带植入小鼠体内3周后,取出的异位骨颗粒鲜艳饱满,骨结构完整;HE切片和Masson三色切片都显示出良好的异位成骨效果。此方法制备的rhBMP-2具有良好的诱导成骨分化能力,可用于骨组织修复,满足临床需要。  相似文献   

12.
Recent advancements in medical imaging, virtual surgical planning (VSP), and three-dimensional (3D) printing have potentially changed how today’s craniomaxillofacial surgeons use patient information for customized treatments. Over the years, polyetheretherketone (PEEK) has emerged as the biomaterial of choice to reconstruct craniofacial defects. With advancements in additive manufacturing (AM) systems, prospects for the point-of-care (POC) 3D printing of PEEK patient-specific implants (PSIs) have emerged. Consequently, investigating the clinical reliability of POC-manufactured PEEK implants has become a necessary endeavor. Therefore, this paper aims to provide a quantitative assessment of POC-manufactured, 3D-printed PEEK PSIs for cranial reconstruction through characterization of the geometrical, morphological, and biomechanical aspects of the in-hospital 3D-printed PEEK cranial implants. The study results revealed that the printed customized cranial implants had high dimensional accuracy and repeatability, displaying clinically acceptable morphologic similarity concerning fit and contours continuity. From a biomechanical standpoint, it was noticed that the tested implants had variable peak load values with discrete fracture patterns and failed at a mean (SD) peak load of 798.38 ± 211.45 N. In conclusion, the results of this preclinical study are in line with cranial implant expectations; however, specific attributes have scope for further improvements.  相似文献   

13.
《Ceramics International》2022,48(18):26274-26286
Nowadays, the repair of long bone defects remains a clinical challenge mainly due to poor oxygen and nutrients delivery. In this study, β-tricalcium phosphate (β-TCP) porous ceramic scaffolds were prepared by digital light processing (DLP) and gradient sintering process. The functionalization of scaffolds was achieved by loading hyaluronic acid-dopamine (HA-DA) coating or sphingosine 1-phosphate/hyaluronic acid-dopamine (S1P/HA-DA) coating, which solved the problem of oxygen and nutrients delivery to a certain extent by promoting blood vessels growth. Cytocompatibility assay, qRT-PCR, Alkaline phosphatase (ALP) staining and quantitative analysis demonstrated that the S1P/HA-DA/TCP scaffolds significantly promoted the proliferation and osteogenic differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs). Long bone defects (22 mm), rarely reported in previous studies, were constructed on the radius of rabbits. Animal experiments showed excellent early angiogenesis and bone repair in HA-DA/TCP and S1P/HA-DA/TCP groups. In particular, the S1P/HA-DA/TCP scaffolds enhanced bone regeneration and osseointegration. Overall, these functionalized scaffolds had an effective repair on long bone defects that would have great potential for clinical applications.  相似文献   

14.
Bone formation and growth are crucial for treating bone fractures. Improving bone-reconstruction methods using autologous bone and synthetic implants can reduce the recovery time. Here, we investigated three treatments using two different materials, a bone-derived decellularized extracellular matrix (bdECM) and β-tricalcium phosphate (β-TCP), individually and in combination, as osteogenic promoter between bone and 3D-printed polycaprolactone scaffold (6-mm diameter) in rat calvarial defects (8-mm critical diameter). The materials were tested with a human pre-osteoblast cell line (MG63) to determine the effects of the osteogenic promoter on bone formation in vitro. A polycaprolactone (PCL) scaffold with a porous structure was placed at the center of the in vivo rat calvarial defects. The gap between the defective bone and PCL scaffold was filled with each material. Animals were sacrificed four weeks post-implantation, and skull samples were preserved for analysis. The preserved samples were scanned by micro-computed tomography and analyzed histologically to examine the clinical benefits of the materials. The bdECM–β-TCP mixture showed faster bone formation and a lower inflammatory response in the rats. Therefore, our results imply that a bdECM–β-TCP mixture is an ideal osteogenic promoter for treating fractures.  相似文献   

15.
目的观察基因重组人骨形态发生蛋白-7(rhBMP-7)与明胶海绵的复合体对犬牙槽骨再生的影响。方法犬拔牙创内植入rhBMP-7与明胶海绵的复合体,以自然愈合拔牙创为对照。于术后2、4、8周分别将犬处死,取拔牙创处牙槽骨标本,行X线和组织学切片检查,观察成骨情况及牙槽骨萎缩情况。结果X线及组织学切片显示实验侧成骨速度及成骨质量明显优于对照侧。结论rhBMP-7与明胶海绵复合体是一种可促进牙槽骨再生的新型生物复合材料。  相似文献   

16.
The study characterized Si-containing α-TCP blocks designed for graft application and examined their osseintegration in rabbit tibiae using histological, histomorphometric and micro-CT techniques. The block grafts were inserted into the critical size defects of 15 rabbits, using both tibiae, and examined at 15, 30 and 60 days. Results showed that new bone grew in direct contact with the block grafts and that the presence of silicon improved the stability and osseointegration of the material. Silicon doped TCP grafts showed enhanced mesenchymal cell differentiation and increased osteoblast activity compared with α-TCP. Furthermore, blocks with the highest concentration of silicon (3% C2S, 97% TCP) showed better dimensional stability and increased bone-to-implant contact values after 60 days (67.6 ± 5% lateral bone contact and 57.3 ± 3% base bone contact). None of the implanted materials were seen to produce any adverse inflammation. The study found that α-TCP ceramic blocks containing 3% C2S, offer good bioactivity, biocompatibility and allow new bone growth around the block and within the graft body, making this an ideal block graft material.  相似文献   

17.
《Ceramics International》2017,43(14):11149-11155
Interconnected porous calcium-deficient hydroxyapatite (cdHAp) blocks may be an ideal biomaterial to repair bone defects because of their greater similarity to human bone than that of sintered hydroxyapatite (HAp) with respect to calcium content and crystallinity. In particular, the interconnected pores in cdHAp may provide pathways for cell migration and tissue ingrowth. In this study, the feasibility of fabricating interconnected porous cdHAp blocks through the setting reaction of alpha-tricalcium phosphate (αTCP) spherical granules was investigated. It was found that regulation of cdHAp formation was important to fabricate interconnected porous cdHAp blocks. That is, cdHAp needed to precipitate preferentially at the contacting areas between αTCP spherical granules. Exposure of αTCP spherical granules to steam under appropriate pressure was effective for this purpose. When αTCP spherical granules were immersed in water at 100 °C, the setting reaction resulted in dense cdHAp blocks because of the free crystal growth of cdHAp in water. Therefore, steam was used to localize the water at the contacting areas between αTCP spherical granules, which was driven by the surface tension of the water. Without an applied load, no setting reaction was observed when αTCP spherical granules were exposed to steam at 100 °C for 12 h. In contrast, under a load of 20 MPa, cdHAp precipitated to bridge spherical granules, providing an interconnected porous cdHAp block. The porosity and diametral tensile strength of this block were approximately 63% and 1.5 MPa, respectively.  相似文献   

18.
Over the last years, orthopedic procedures for bone repairs have been developed due to an increase in trauma and diseases. The development of bioactive composites using biodegradable polymers like poly(lactic acid) (PLA) and bioactive fillers as hydroxyapatite (HA) originate biomaterials, which combine bioactivity of HA and PLA biocompatibility. Therefore, using additive manufacturing is possible for the production of customized products made from these materials; however, a thorough study of these materials is required. In this context, melt-compounding has been used to manufacture bioactive composites of PLA/HA, and rheological, molecular, and thermomechanical behavior were assessed. The biocomposite of PLA with 10 wt% HA presented a strong shear thinning behavior, which makes it more suitable for fused filament fabrication since lower printing pressure is required. Furthermore, this composite presented an enhancement of 12% in thermomechanical properties in comparison to PLA and a slight increase in cell proliferation. PLA and PLA/HA were fabricated and used to produce 3D calibrations cube as a proof of concept. They presented good printability and high accuracy, and therefore, further investigation needs to be performed to unleash its use in bone tissue engineering applications. POLYM. ENG. SCI., 60:636–644, 2020. © 2020 Society of Plastics Engineers  相似文献   

19.
The aim of this study was to investigate the feasibility and advantages of the dual delivery of bone morphogenetic protein-2 (BMP-2) and basic fibroblast growth factor (bFGF) from nano-composite scaffolds (PLGA/PCL/nHA) loaded with vascular stents (PLCL/Col/nHA) for large bone defect regeneration in rabbit mandibles. Thirty-six large bone defects were repaired in rabbits using engineering bone composed of allogeneic bone marrow mesenchymal stem cells (BMSCs), bFGF, BMP-2 and scaffolds composed of PLGA/PCL/nHA loaded with PLCL/Col/nHA. The experiments were divided into six groups: BMSCs/bFGF/BMP-2/scaffold, BMSCs/BMP-2/scaffold, BMSCs/bFGF/scaffold, BMSCs/scaffold, scaffold alone and no treatment. Sodium alginate hydrogel was used as the carrier for BMP-2 and bFGF and its features, including gelling, degradation and controlled release properties, was detected by the determination of gelation and degradation time coupled with a controlled release study of bovine serum albumin (BSA). AlamarBlue assay and alkaline phosphatase (ALP) activity were used to evaluate the proliferation and osteogenic differentiation of BMSCs in different groups. X-ray and histological examinations of the samples were performed after 4 and 12 weeks post-implantation to clarify new bone formation in the mandible defects. The results verified that the use of sodium alginate hydrogel as a controlled release carrier has good sustained release ability, and the combined application of bFGF and BMP-2 could significantly promote the proliferation and osteogenic differentiation of BMSCs (p < 0.05 or p < 0.01). In addition, X-ray and histological examinations of the samples exhibited that the dual release group had significantly higher bone formation than the other groups. The above results indicate that the delivery of both growth factors could enhance new bone formation and vascularization compared with delivery of BMP-2 or bFGF alone, and may supply a promising way of repairing large bone defects in bone tissue engineering.  相似文献   

20.
Bioactive glasses can heal bone defects and bond with bone through formation of hydroxyl carbonate apatite (HCA) surface layer. Sol-gel derived bioactive glasses are thought to have potential for improving bone regeneration rates over melt-derived compositions. The 58S sol-gel composition (60 mol% SiO2, 36 mol% CaO, and 4 mol% P2O5) has appeared in commercial products. Here, hydroxyapatite (HA) was found to form within the 58S glass during sol-gel synthesis after thermal stabilization. The preformed HA may lead to rapid release of calcium orthophosphate, or nanocrystals of HA, on exposure to body fluid, rather than the release of separate the calcium and phosphate species. Increasing the P2O5 to CaO ratio in the glass composition reduced preformed HA formation, as observed by XRD and solid-state NMR. Instead, above 12 mol% phosphate, a phosphate glass network (polyphosphate) formed, creating co-networks of phosphate and silica. Nanopore diameter of the glass and rate of HCA layer formation in simulated body fluid (SBF) decreased when the phosphate content increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号