首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This study was designed to evaluate the effects of strontium on the expression levels of microRNAs (miRNAs) and to explore their effects on skeletal cell proliferation, differentiation, adhesion, and apoptosis. The targets of these miRNAs were also studied. Molecular cloning, cell proliferation assay, cell apoptosis assay, quantitative real-time PCR, and luciferase reporter assay were used. Strontium altered the expression levels of miRNAs in vitro and in vivo. miR-9-5p, miR-675-5p, and miR-138-5p impaired skeletal cell proliferation, cell differentiation and cell adhesion. miR-9-5p and miR-675-5p induced MC3T3-E1 cell apoptosis more specifically than miR-138-5p. miR-9-5p, miR-675-5p, and miR-138-5p targeted glycogen synthase kinase 3 β (GSK3β), ATPase Aminophospholipid Transporter Class I Type 8A Member 2 (ATP8A2), and Eukaryotic Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1), respectively. Low-density lipoprotein receptor-related protein 5 (LRP5) played a positive role in skeletal development. miR-9-5p, miR-675-5p, and miR-138-5p damage strontium and LRP5-mediated skeletal cell proliferation, differentiation, and adhesion, and induce cell apoptosis by targeting GSK3β, ATP8A2, and EIF4EBP1, respectively.  相似文献   

2.
3.
Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted; and through a bioinformatic approach the common miRNAs target Specificity proteins (Sp1) were identified. Sp1 regulates the expression of gap junction protein Connexin43 (Cx43), which in OA drives the modification of (i) osteoblasts and chondrocytes genes expression, (ii) joint inflammation cytokines releases and (iii) cell functions. Concerning this, thanks to gain and loss of function studies, the possible role of Sp1 as a modulator of CX43 expression through miR-31-5p and miR-33a-5p action was also evaluated. Finally, we hypothesize that both miRNAs cooperate to modulate the expression of SP1 in osteoblasts and chondrocytes and interfering, consequently, with CX43 expression, and they might be further investigated as new possible biomarkers for OA.  相似文献   

4.
Abdominal aortic aneurysm (AAA) is an inflammatory disease associated with marked changes in the cellular composition of the aortic wall. This study aims to identify microRNA (miRNA) expression in aneurysmal inflammatory cells isolated by laser microdissection from human tissue samples. The distribution of inflammatory cells (neutrophils, B and T lymphocytes, mast cells) was evaluated in human AAA biopsies. We observed in half of the samples that adventitial tertiary lymphoid organs (ATLOs) with a thickness from 0.5 to 2 mm were located exclusively in the adventitia. Out of the 850 miRNA that were screened by microarray in isolated ATLOs (n = 2), 164 miRNAs were detected in ATLOs. The three miRNAs (miR-15a-3p, miR-30a-5p and miR-489-3p) with the highest expression levels were chosen and their expression quantified by RT-PCR in isolated ATLOs (n = 4), M1 (n = 2) and M2 macrophages (n = 2) and entire aneurysmal biopsies (n = 3). Except for the miR-30a-5p, a similar modulation was found in ATLOs and the two subtypes of macrophages. The modulated miRNAs were then evaluated in the plasma of AAA patients for their potential as AAA biomarkers. Our data emphasize the potential of miR-15a-3p and miR-30a-5p as biomarkers of AAA but also as triggers of ATLO evolution. Further investigations will be required to evaluate their targets in order to better understand AAA pathophysiology.  相似文献   

5.
6.
Diet is a well-known risk factor of cardiovascular diseases (CVDs). Some microRNAs (miRNAs) have been described to regulate molecular pathways related to CVDs. Diet can modulate miRNAs and their target genes. Choline, betaine, and l-carnitine, nutrients found in animal products, are metabolized into trimethylamine n-oxide (TMAO), which has been associated with CVD risk. The aim of this study was to investigate TMAO regulation of CVD-related miRNAs and their target genes in cellular models of liver and macrophages. We treated HEPG-2, THP-1, mouse liver organoids, and primary human macrophages with 6 µM TMAO at different timepoints (4, 8, and 24 h for HEPG-2 and mouse liver organoids, 12 and 24 h for THP-1, and 12 h for primary human macrophages) and analyzed the expression of a selected panel of CVD-related miRNAs and their target genes and proteins by real-time PCR and Western blot, respectively. HEPG-2 cells were transfected with anti-miR-30c and syn-miR-30c. TMAO increased the expression of miR-21-5p and miR-30c-5p. PER2, a target gene of both, decreased its expression with TMAO in HEPG-2 and mice liver organoids but increased its mRNA expression with syn-miR-30c. We concluded that TMAO modulates the expression of miRNAs related to CVDs, and that such modulation affects their target genes.  相似文献   

7.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease for which there are currently no validated outcome measures for assessing therapeutic intervention efficacy. The aim of this study was to identify a plasma and/or serum microRNA (miRNA) biomarker panel for MNGIE. Sixty-five patients and 65 age and sex matched healthy controls were recruited and assigned to one of four study phases: (i) discovery for sample size determination; (ii) candidate screening; (iii) candidate validation; and (iv) verifying the performance of the validated miRNA panel in four patients treated with erythrocyte-encapsulated thymidine phosphorylase (EE-TP), an enzyme replacement under development for MNGIE. Quantitative PCR (qPCR) was used to profile miRNAs in serum and/or plasma samples collected for the discovery, validation and performance phases, and next generation sequencing (NGS) analysis was applied to serum samples assigned to the candidate screening phase. Forty-one differentially expressed candidate miRNAs were identified in the sera of patients (p < 0.05, log2 fold change > 1). The validation cohort revealed that of those, 27 miRNAs were upregulated in plasma and three miRNAs were upregulated in sera (p < 0.05). Through binary logistic regression analyses, five plasma miRNAs (miR-192-5p, miR-193a-5p, miR-194-5p, miR-215-5p and miR-34a-5p) and three serum miRNAs (miR-192-5p, miR-194-5p and miR-34a-5p) were shown to robustly distinguish MNGIE from healthy controls. Reduced longitudinal miRNA expression of miR-34a-5p was observed in all four patients treated with EE-TP and coincided with biochemical and clinical improvements. We recommend the inclusion of the plasma exploratory miRNA biomarker panel in future clinical trials of investigational therapies for MNGIE; it may have prognostic value for assessing clinical status.  相似文献   

8.
Numerous molecular factors disrupt the correctness of the cell cycle process leading to the development of cancer due to increased cell proliferation. Among known causative factors of such process is abnormal gene expression. Nowadays in the light of current knowledge such alterations are frequently considered in the context of mRNA–miRNA correlation. One of the molecular factors with potential value in tumorigenesis is the feedback loop between MYC and E2F genes in which miR-17-5p and miR-20a from the miR-17-92 cluster are involved. The current literature shows that overexpression of the members of the OncomiR-1 are involved in the development of many solid tumors. In the present work, we investigated the expression of components of the MYC/E2F/miR-17-92 network and their closely related elements including members of MYC and E2F families and miRNAs from two paralogs of miR-17-92: miR-106b-25 and miR-106a-363, in the most common brain tumors of childhood, pilocytic astrocytoma (PA), WHO grade 1; ependymoma (EP), WHO grade 2; and medulloblastoma (MB), WHO grade 4. We showed that the highest gene expression was observed in the MYC family for MYCN and in the E2F family for E2F2. Positive correlation was observed between the gene expression and tumor grade and type, with the highest expression being noted for medulloblastomas, followed by ependymomas, and the lowest for pilocytic astrocytomas. Most members of miR-17-92, miR-106a-363 and miR-106b-25 clusters were upregulated and the highest expression was noted for miR-18a and miR-18b. The rest of the miRNAs, including miR-19a, miR-92a, miR-106a, miR-93, or miR-25 also showed high values. miR-17-5p, miR-20a obtained a high level of expression in medulloblastomas and ependymomas, while close to the control in the pilocytic astrocytoma samples. miRNA expression also depended on tumor grade and histology.  相似文献   

9.
Renal cell carcinoma (RCC) is the third most frequent urinary malignancy and one of the most lethal. Current diagnostic and follow-up techniques are harmful and unspecific in low-grade tumors. Novel minimally invasive markers such as urine microRNAs (miRNAs) are under study. However, discrepancies arise among studies in part due to lack of consent regarding normalization. We aimed to identify the best miRNA normalizer for RCC studies performed in urine samples together with a miRNA profile with diagnostic value and another for follow-up. We evaluated the performance of 120 candidate miRNAs in the urine of 16 RCC patients and 16 healthy controls by RT-qPCR followed by a stability analysis with RefFinder. In this screening stage, miR-20a-5p arose as the most stably expressed miRNA in RCC and controls, with a good expression level. Its stability was validated in an independent cohort of 51 RCC patients and 32 controls. Using miR-20a-5p as normalizer, we adjusted and validated a diagnostic model for RCC with three miRNAs (miR-200a-3p, miR-34a-5p and miR-365a-3p) (AUC = 0.65; Confidence Interval 95% [0.51, 0.79], p = 0.043). let-7d-5p and miR-205-5p were also upregulated in patients compared to controls. Comparing RCC samples before surgery and fourteen weeks after, we identified let-7d-5p, miR-152-3p, miR-30c-5p, miR-362-3p and miR-30e-3p as potential follow-up profile for RCC. We identified validated targets of most miRNAs in the renal cell carcinoma pathway. This is the first study that identifies a robust normalizer for urine RCC miRNA studies, miR-20a-5p, which may allow the comparison of future studies among laboratories. Once confirmed in a larger independent cohort, the miRNAs profiles identified may improve the non-invasive diagnosis and follow-up of RCC.  相似文献   

10.
Ovarian granulosa cells (GC) play an essential role in the development and atresia of follicles. Emerging studies suggest that non-coding RNAs are involved in the regulation of GC apoptosis. Here, we aimed to analyze the function of ssc-circINHA-001, coded by the first exon of the inhibin subunit α gene (INHA), in resisting GC apoptosis and follicular atresia by enhancing the expression of the inhibin subunit β A (INHBA) through a cluster of miRNAs. A higher expression of ssc-circINHA-001 in healthy follicles compared to early atretic follicles was detected by qRT-PCR. Its circular structure was confirmed by RNase R treatment and reversed PCR. The function of ssc-circINHA-001 in GC resistance to apoptosis was detected by in vitro transfection of its si-RNA. Furthermore, the dual-luciferase reporter assay suggested that ssc-circINHA-001 adsorbed three miRNAs, termed miR-214-5p, miR-7144-3p, and miR-9830-5p, which share the common target INHBA. A low expression of ssc-circINHA-001 increased the levels of the free miRNAs, inhibited INHBA expression, and thus raised GCs apoptosis through a shift from the secretion of activin to that of inhibin. Our study demonstrated the existence of a circRNA–microRNAs–INHBA regulatory axis in follicular GC apoptosis and provides insight into the relationship between circRNA function and its coding gene in inhibin/activin balance and ovarian physiological functions.  相似文献   

11.
Glioblastoma (GBM), the most common primary brain tumor, is a complex and extremely aggressive disease. Despite recent advances in molecular biology, there is a lack of biomarkers, which would improve GBM’s diagnosis, prognosis, and therapy. Here, we analyzed by qPCR the expression levels of a set of miRNAs in GBM and lower-grade glioma human tissue samples and performed a survival analysis in silico. We then determined the expression of same miRNAs and their selected target mRNAs in small extracellular vesicles (sEVs) of GBM cell lines. We showed that the expression of miR-21-5p was significantly increased in GBM tissue compared to lower-grade glioma and reference brain tissue, while miR-124-3p and miR-138-5p were overexpressed in reference brain tissue compared to GBM. We also demonstrated that miR-9-5p and miR-124-3p were overexpressed in the sEVs of GBM stem cell lines (NCH421k or NCH644, respectively) compared to the sEVs of all other GBM cell lines and astrocytes. VIM mRNA, a target of miR-124-3p and miR-138-5p, was overexpressed in the sEVs of U251 and U87 GBM cell lines compared to the sEVs of GBM stem cell line and also astrocytes. Our results suggest VIM mRNA, miR-9-5p miRNA, and miR-124-3p miRNA could serve as biomarkers of the sEVs of GBM cells.  相似文献   

12.
13.
14.
15.
MicroRNAs (miRNAs) can be secreted into body fluids and have thus been reported as a new type of cancer biomarker. This study aimed to determine whether urinary miRNAs act as noninvasive biomarkers for diagnosing bladder cancer. Small RNA profiles from urine were generated for 10 patients with bladder cancer and 10 healthy controls by using next-generation sequencing. We identified 50 urinary miRNAs that were differentially expressed in bladder cancer compared with controls, comprising 44 upregulated and six downregulated miRNAs. Pathway enrichment analysis revealed that the biological role of these differentially expressed miRNAs might be involved in cancer-associated signaling pathways. Further analysis of the public database revealed that let-7b-5p, miR-149-5p, miR-146a-5p, miR-193a-5p, and miR-423-5p were significantly increased in bladder cancer compared with corresponding adjacent normal tissues. Furthermore, high miR-149-5p and miR-193a-5p expression was significantly correlated with poor overall survival in patients with bladder cancer. The qRT-PCR approach revealed that the expression levels of let-7b-5p, miR-149-5p, miR-146a-5p and miR-423-5p were significantly increased in the urine of patients with bladder cancer compared with those of controls. Although our results indicated that urinary miRNAs are promising biomarkers for diagnosing bladder cancer, this must be validated in larger cohorts in the future.  相似文献   

16.
The aim of this study was to examine whether salivary exosomal miRNAs could be identified as aging biomarkers. Fifteen young healthy volunteers (median age, 21.0 years) and 13 old individuals (median age, 66.0 years) were recruited. Unstimulated whole saliva was collected, salivary exosomes were isolated, and total RNA was extracted. In a microarray, 242 miRNAs were commonly detected in these two mixed samples. Based on the cut-off values of 2- or 0.5-fold changes (FC) and regulatory power for aging process, six candidate miRNAs (miR-24-3p, miR-371a-5p, miR-3175, miR-3162-5p, miR-671-5p, and miR-4667-5p) were selected. After comparing each total RNA obtained by the 15 young and 13 old individuals to validate the FC values using quantitative real-time PCR, miR-24-3p was identified as a novel candidate aging biomarker. This pilot study suggested that salivary exosomal miRNAs could be identified as candidate aging biomarkers. To confirm whether miR-24-3p in salivary exosomes are suitable biomarkers of aging, further validation research is required.  相似文献   

17.
A key challenge for the improvement of clear cell renal cell carcinoma (ccRCC) management could derive from a deeper characterization of the biology of these neoplasms that could greatly improve the diagnosis, prognosis and treatment choice. The aim of this study was to identify specific miRNAs that are deregulated in tumor vs. normal kidney tissues and that could impact on the biology of ccRCC. To this end we selected four miRNAs (miR-21-5p, miR-210-3p, miR-185-5p and miR-221-3p) and their expression has been evaluated in a retrospective cohort of formalin-fixed paraffin-embedded (FFPE) tissues from 20 ccRCC patients who underwent surgical nephrectomy resection. miR-21-5p and miR-210-3p resulted the most significantly up-regulated miRNAs in this patient cohort, highlighting these onco-miRNAs as possible relevant players involved in ccRCC tumorigenesis. Thus, this study reports the identification of specific oncogenic miRNAs that are altered in ccRCC tissues and suggests that they might be useful biomarkers in ccRCC management.  相似文献   

18.
Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth.  相似文献   

19.
MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3′ untranslated regions (3′ UTRs) of messenger RNAs (mRNAs). Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expressed in skeletal muscle and was induced during C2C12 myoblasts differentiation. We also identified and confirmed several genes of the IGF-1/AKT/mTOR signal pathway, including IGF-1, mTOR, and RPS6KA6, as important cellular targets of miR-199a-3p in myoblasts. Overexpression of miR-199a-3p partially blocked C2C12 myoblast differentiation and the activation of AKT/mTOR signal pathway, while interference of miR-199a-3p by antisense oligonucleotides promoted C2C12 differentiation and myotube hypertrophy. Thus, our studies have established miR-199a-3p as a potential regulator of myogenesis through the suppression of IGF-1/AKT/mTOR signal pathway.  相似文献   

20.
MicroRNAs (miRNAs) constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS) challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192) were selected for validation by quantitative polymerase chain reaction (qPCR), which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1) mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号