首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
双曲守恒型方程的二阶摄动有限差分格式   总被引:5,自引:1,他引:5  
对双曲守恒型方程,将其一阶迎风格式空间差商的常系数摄动展开为时间步长和空间步长的幂级数,通过确定幂级数系数而获得二阶精度的摄动有限差分(PFD)格式。进而从双曲守恒型方程的通量分裂型一阶迎风格式出发,通过类似的摄动展开方法,获得空间精度为二阶的通量分裂形式的摄动有限差分(FPFD)格式。这两类格式保留了一阶守恒迎风格式的简洁结构形式,使用三节点即可达到二阶精度,又避免了三点二阶格式的非物理数值振荡。并将这两类格式推广应用到双曲守恒型方程组,最后通过模型方程和一维激波管流动的数值算例验证了格式的高精度、高分辨率性质。  相似文献   

2.
高超声速再入体表面热流数值模拟研究   总被引:2,自引:0,他引:2  
本文采用计算效率较高的标量对角化隐式NND格式,通过求解Navier-Stokes方程对影响再入体表面热流计算准确的诸因素进行了综合分析,研究了Steger-Warming通矢量分裂、Van Leer通矢量分裂和通量差分分裂方法及相应熵修正方法对热流的分辨能力,并阐明了在物面边界上采用二阶中心格式、二阶中心和二阶迎风混合格式、以及一阶迎风格式等不同边界格式对热流计算的影响。在此基础上,采用通量差分形式NND格式对钝锥和钝双锥高超声速粘性绕流进行了数值模拟,计算给出了与试验结果相吻合的热流分布。  相似文献   

3.
声速再入体表面热流数值模拟研究   总被引:1,自引:0,他引:1  
本文采用计算效率较高的标量对角化隐式NND格式,通过求解Navier-Stokes方程对影响再入体表面热流计算准确的诸因素进行了综合分析。研究了Steger-Warming通矢量分裂、VanLeer通矢量分裂和通量差分分裂方法及相应熵修正方法对热流的分辨能力,并阐明了在物面边界上采用二阶中心格式、二阶中心和二阶迎风混合格式、以及一阶迎风格式等不同边界格式对热流计算的影响。在此基础上,采用通量差分形式NND格式对钝锥和钝双锥高超声速粘性绕流进行了数值模拟,计算给出了与试验结果相吻合的热流分布。  相似文献   

4.
摄动有限差分(PFD)方法从一阶迎风差分格式出发,将差分系数展开为网格步长的幂级数,通过提高修正微分方程的逼近精度来获得更高精度的差分格式。由于格式基于一阶迎风格式,因此具有迎风效应、网格节点少等特点。本文首先通过对Burgers方程的摄动差分格式的推导,将摄动有限差分格式引入时间相关法的计算,并构造了守恒形式的摄动有限差分格式,然后推广到一维Navier-Stokes方程组的计算。数值比较研究表明:本文构造的NS方程摄动有限差分格式具有比一阶迎风较高的精度和分辨率,而且保持了一阶迎风格式的无振荡性质。  相似文献   

5.
本文从基于通量分裂的一阶迎风格式出发,构造了一类校正型具有高分辨瘁的二阶全变差递减(TVD)格式,并用此格式进行了一维激波管问题及二维问题的计算。结果表明格式的解为二阶精度,激波处无明显的振荡,激波过渡区为1~2个点。  相似文献   

6.
烧蚀外形三维粘性流场数值模拟   总被引:1,自引:1,他引:1  
本文通过求解层流Navier-Stokes方程,数值模拟了三维奶头型烧蚀外形粘性流场。差分格式为Yee和Harten的迎风隐式TVD格式,在空间方向具有二阶精度。计算得到了高质量的激波和合理的流场结构。物面压力分布与实验结果进行比较,符合较好。  相似文献   

7.
一种混合型四阶格式、基于特征的边界条件及其应用   总被引:1,自引:0,他引:1  
本文描述并应用差分格式的构造原则,采用了时空转换的格式构造方法构造了一个四阶精度的差分格式,文中还进一步提出将四阶格式和二阶NND格式混合的方法,即在光滑区格式保持四阶精度、在激波附近降为二阶NND格式,来增强格式捕捉激波的能力。同时,本文基于特征传播的思想,建立了一种开边界的数值计算方法,并采用将边界条件嵌入控制方程的方法以及新的简化形式的边界处理方法,完整给出了无粘、粘性物面和开边界的的边界计  相似文献   

8.
一种求解透平叶栅三维流场的高精度TVD格式   总被引:1,自引:0,他引:1  
本文提出了一种应用三阶精度Chakravarthy-OsherTVD格式求解环形透平叶栅三维定常流场的隐式近似因子分解方法。控制方程为柱座标速度分量表示的任意曲线座标系下的三维欧拉方程。采用Beam-Warming近似分解, 对隐式项进行迎风差分, 得到了时间精度为一阶、空间精度为5点三阶的隐式格式。算例对5点三阶和5点二阶精度的格式进行了比较。表明空间三阶精度隐格式对计算结果没有明显改进, 但收敛残差有较大降低。   相似文献   

9.
求解守恒律及对流扩散方程的中心迎风方法   总被引:1,自引:0,他引:1  
提出了一种新的求解双曲守恒律方程(组)的四阶半离散中心迎风差分方法。空间导数项的离散采用四阶CWENO的构造方法,使所得到的新方法在提高精度的同时,具有更高的分辨率。使用该方法产生的数值粘性同阶要比交错的中心格式小,而且由于数值粘性与时间步长无关,从而时间步长可根据稳定性需要尽可能的小。  相似文献   

10.
不同轴长比椭球体的绕流计算与分离形态分析   总被引:1,自引:1,他引:0  
袁礼  忻鼎定  庄逢甘 《航空学报》1996,17(Z1):14-20
用拟压缩性方法求解不可压N-S方程,对4∶1旋成体椭球和其他轴长比椭球的层流绕流进行数值模拟。分别用二阶中心差分格式和三阶迎风紧致差分格式来逼近无粘项。从计算所得的表面摩擦应力线、空间流线和横截面流场特性,分析了10°≤α≤70°迎角范围内的分离和脱体涡系形态,算出了相应的气动特性。计算结果表明,三阶迎风紧致差分比二阶中心差分可更好地模拟分离涡结构。迎角直到40°时,算出的流态仍然对称,而迎角为70°时,算出的流态为非对称非定常,与实验流态基本相符。椭球体横截面形状越扁平,开式分离就越提前产生。椭球体横截面形状横向越窄,分离区就越小。由于改变椭球体横截面形状具有改变分离和脱体涡系的效果,本文的研究结果有助于改善三维物体的气动力特性,为改进机体设计提供理论依据  相似文献   

11.
基于5阶精度格式WCNS-E-5的p-multigrid方法研究   总被引:1,自引:0,他引:1  
p-multigrid方法的基本思想是:在保证收敛结果为高阶精度的同时,利用低阶精度格式耗散大的特点,来改善高精度有限差分格式在迭代计算时收敛速度慢的弱点.本文基于5阶精度WCNS-E-5差分格式,引入1阶精度迎风格式和3阶精度加权格式,构造了p-multigrid方法,在迭代过程中采用了V循环、W循环、S循环、PreV和FMG循环等不同方式来应用这三种格式,并通过典型算例考察了这些循环方式对收敛速度的影响,初步数值试验表明,采用恰当的循环方式,本文所设计的p-multigrid方法能够加快收敛速度,并保证了最终收敛结果与5阶精度WCNS-E-5差分格式的一致性.  相似文献   

12.
本文发展了一种解二维欧拉方程的隐式逆风有限元格式。空间近似应用的是二阶精度逆风方法;时间近似上根据数值通量函数的线性化处理导出了有限元的隐格式。为减少数值振荡,引入了基于特征变量的限制因子。在经自适应处理的非结构网络上,本文对跨、超、高超声速绕流进行了数值模拟。计算实践表明发展的隐式有限元格式与显格式相比具有较高的计算效率和较强的适应性。  相似文献   

13.
关于建立高阶差分格式的问题   总被引:5,自引:1,他引:4  
为了能在不太密的网格上捕捉到流场的细致结构。通常采用高阶精度的差分 式进行数值模拟。为能抑制计算中和在激波附近产生的虚假波动,本文从物理构思出发,提出了建立高阶格式的两个基本原则,作者称之为抑制波动的原则和稳定性原则。  相似文献   

14.
有限元法是一种加权积分的方法,这个特点和权函数的特性使得有限元法在计算诸如热流(与温度的一阶导数相关)等物理量时有其内在的优越性.本文研究了高超声速复杂外形热流的NND有限元数值计算方法,并对高超声速球钝锥外形和带翼飞行器外形的绕流进行了数值模拟,算例结果令人满意.  相似文献   

15.
复杂外形飞行器热流的NND有限元数值计算方法   总被引:1,自引:0,他引:1  
有限元方法是一种加权积分的方法,其特点和权函数的特性使得有限元方法对于复杂外形的边界处理和计算诸如热流(与温度的一阶导数相关)等物理量时有其内在的优越性.本文采用张涵信的NND思想发展了复杂流场的NND有限元计算方法,算例表明,在相同的网格雷诺数下,采用积分的方法提高了物体表面热流的计算精度,对高超声速复杂外形飞行器的绕流获得了良好的数值模拟结果.  相似文献   

16.
通过Green定理将对流项变量从微分算子中分离出来,从插值函数入手引入迎风格式,是对强对流问题有限元计算中对流项变量的一种新的处理方法。按这种方法采用局部斜迎风格式及速-压同位网格公式,构成了一种对高Reynolds数流体流动数值模拟比较有效的有限元方法。  相似文献   

17.
本文采用有限体积Galerkin法和非结构网格数值求解了跨声速三维Euler方程,通量的求解采用VanLeer-阶逆风矢能量发裂方式,并通过外插使其上升为二阶精度,分别采用了显式及隐式两种格式求解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号