首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
This article deals with the distribution, composition profiles, and possible sources of sixteen priority polycyclic aromatic hydrocarbons (PAHs) in residential soils from Korba district in Chhattisgarh State, India. Sixteen priority PAHs in soils were analyzed after ultrasonic extraction, silica gel column chromatographic cleanup, and quantitation was performed using HPLC-DAD. The concentrations of ∑16PAHs were within acceptable limits of soil quality guidelines and the study area got classified as weakly contaminated. The concentration of probable human carcinogenic PAHs in soils accounted for 10% of ∑16PAHs. The concentration of Benzo(a)Pyrene (BaP) accounted 1% to total PAHs. Benzo(a)pyrene Toxicity Equivalency (BaPTEQ) for 16 PAHs was 30 ± 12 μg BaPTEQ kg?1. The composition profiles and molecular ratios of PAHs suggested mixed pyrogenic sources of PAHs from combustion of coal, wood, and vehicular exhaust emissions. Human health risk was assessed by calculating the lifetime average daily dose (LADD) and incremental life time cancer risk (ILCR) for human adults and children. Estimated ILCR was within safe limit (10?6?10?5), indicating low risk to human population. Potential risk to contaminated ground water from leaching of carcinogenic PAHs was assessed by estimating the Index of Additive Cancer Risk (IACR).  相似文献   

2.
The concentrations of the 16 priority polycyclic aromatic hydrocarbons (PAHs) in tea infusions made of water and local gin (alcohol) were investigated with a view to providing information on the profiles and health hazards associated with these two common Nigerian methods for tea consumption. The water-based tea infusion was prepared by submerging 4 g of tea in boiling water and allowing it to stand for 15 min, while the gin-based infusion was simply prepared by submerging 4 g of tea in gin at room temperature and allowing it to stand for 15 min. The concentrations of the ∑16 PAHs in the infusions were measured by using gas chromatography equipped with a flame ionization detector (GC-FID) after ultrasound-assisted extraction and clean-up. The concentrations of the ∑16 PAHs ranged from 24.9–623.4 μg kg?1 with a mean value of 177 μg kg?1 and 36.8–438.3 μg kg?1 with a mean of 189 μg kg?1 for water- and local gin-based infusions, respectively. The concentration of the ∑16 PAHs in the water- and local gin-based infusions of these teas were high when compared with levels reported in the literature for tea infusions. The local gin-based infusions had a higher mean level of the ∑16 PAHs than the water-based infusions. Four- and five-ring PAH compounds were dominant in these tea infusions.  相似文献   

3.
During the past few decades, urban and suburban developments have grown at unprecedented rates and extents with unknown consequences for ecosystem function. The problem of soil pollution as a result of the accelerating development of Guangzhou in China is becoming great concerns. In the present study, gas chromatograph coupled mass spectrometry (GC-MS), inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were employed to determine the 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) and the heavy metals (As, Cr, Cu, Pb, Cd, Hg, and Se) of soils collected from suburban areas of Guangzhou. The genotoxicity of these soils was screened with micronucleus (MN) assay in Vicia faba root cells. The concentrations of the pollutants in the soils were (dried weight): ΣPAHs (230.6–1263 ng·g?1), As (2282.6–36064 μg·kg?1), Cr (7109–64699 μg·kg?1), Cu (7047–56388 μg·kg?1), Pb (9675.9–93739 μg·kg?1), Cd (68.5–847.3 μg·kg?1), Hg (85.4–549.2 μg·kg?1), and Se (219.2–968 μg·kg?1), which fell in the moderately polluted range. However, six out of nine soil-exposed groups had a significant increases of MN frequencies observed in the V. faba root cells compared with the negative group (P < 0.05, P < 0.01), indicating that they had potential genotoxic risks. Bringing together the chemical analyses with the biological effects observed in this study, the genotoxic response could at a certain degree be explained by both the soil PAHs and heavy metals. Our results suggested that apart from chemical analysis, bioassays like the MN assay of V. faba root cells should also be included in a battery of tests to assess the eco-environmental risks of urban and/or urbanization in the developing areas on the soils.  相似文献   

4.
In May 2013, sediment samples were collected from five stations in the Straits of Johor, near the southern tip of Peninsular Malaysia, in order to evaluate the distribution and sources of polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 United States Environmental Protection Agency PAHs varied from 650.5 to 1441.2 ng g ?1 dry weight (dw) with a mean value of 985.5 ng g ?1 dw. PAHs can be classified as moderate level pollution in the collected samples. When comparing PAHs in this study with that of the sediment quality guidelines (SQGs), it was found that the total PAHs, low molecular weight (LMW), and high molecular weight (HMW) PAHs might incur minimal adverse biological effects. The diagnostic ratios of individual PAHs indicated both petrogenic and pyrogenic origins with predominantly pyrogenic sources, the findings of which are further supported by the results from principal component analysis (PCA). The PCA results reveal contributions of 44.44%, 32.3%, and 18.96% for traffic-related, coal combustion, and petroleum-related products, respectively. These findings indicate that the effective monitoring and significant improvement resulting from the implementation of environmental regulations in Malaysia might have caused a shift in the source of petroleum hydrocarbons in the Straits of Johor's aquatic ecosystems from petrogenic to pyrogenic origins.  相似文献   

5.
Wastewater from urban areas constitutes one of the major sources of pollutants contributed to aquatic ecosystem. This study was carried out to elucidate the occurrence and possible source of US Environmental Protection Agency identified 16 priority polycyclic aromatic hydrocarbons (PAHs) in water and sediments from the urban wastewater drains in Delhi, India. A total 60 samples (water and sediment) collected during year 2011–2012, and analyzed the following USEPA methods. Water and sediment samples were extracted using liquid-liquid and ultrasonication techniques, respectively. Glass column chromatography with activated silica was used for sample extracts clean-up, followed by quantification on HPLC equipped with diode array detector at 254 nm wavelength using mixture of acetonitrule and water as mobile phase. Concentrations of total 16 PAHs (∑16PAHs) in all drain water samples ranged from 0.29–35.22 μg/L (mean ± SD, 10.83 ± 10.66 μg/L), predominated by two- and three -ring PAHs. The ∑16PAHs concentrations in all collected sediments ranged between 220–19321 μg/kg (mean±SD, 5574 ± 6820 μg/kg) dry weights. High molecular weight PAHs (≥4-ring PAHs) were dominant in sediment samples. Benzo(a)pyrene equivalent (BaPeq), a relative carcinogenic potential to the corresponding PAHs to BaP was estimated and presented. A selected number of concentration ratios of specific PAHs compounds were calculated and used to diagnose the possible sources of PAHs contamination. The diagnostic ratios reflected pyrogenic input from gasoline or diesel powered vehicular emissions as the major source of PAHs. The levels of PAHs observed in water and sediments were compared with similar studies undertaken in other regions of the world.  相似文献   

6.
The indoor burning of different materials like fuels, incense, mosquito coil, candles etc. results in generation of polycyclic aromatic hydrocarbons (PAHs) in an uncontrolled manner. The PAH, i.e., Benzo(a)pyrene (BaP) is considered as most toxic or carcinogenic and the toxicity of other PAHs is related to this compound. Therefore, the concentration and emission fluxes of polycyclic aromatic hydrocarbons (PAHs) emitted during burning of commonly used indoor materials, i.e., 15 fuels (i.e., biomass (BM), coal (C), cow dung (CD), kerosene (K)), 4 incense (IS) and mosquito coil (MC) in Raipur district, Chhattisgarh, central India is described. The samples were taken in September 2013 in indoor environments and respective smoke emitted were collected using high volume United State of America (USA) air sampler on quartz fiber filters. The concentration of total 13 PAHs (∑PAH13) (i.e., phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)-pyrene, dibenz(ah)anthracene, benzo(ghi) perylene, indeno1,2,3-(cd)pyrene, and coronene) in particulate matter (PM10) in the indoor air during burning of the fuels, IS and MC materials ranged from 367–92052 ng m?3, 4089–14047 ng m?3, and 66–103 ng m?3 with mean values of 7767 ± 11809 ng m?3, 9977 ± 4137 ng m?3, and 74 ± 20 ng m?3, respectively. The mean concentration of the ∑PAH13 present in indoor environment is much higher than the WHO limit value of 1.0 ng m?3. The sources and toxicities of PAHs are discussed.  相似文献   

7.
A methodology for the PAHs and PCBs congener determination in sediment samples has been revised. We determined the distributions of PAHs and PCBs in the superficial sediments of the Scoglitti (Italy) coastal area to provide data for comparison with other marine systems and to hypothesize the sources. Extraction yield, for PCB, was never less than 60% in most cases, while for PAHs, utilizing perdeuterated surrogate standard (benz[a]anthracene-d12 and anthracene-d10) was never less than 72%. The total concentration of the 16 PAHs investigated, expressed as the sum of concentrations, ∑PAHs, varied from 1–5087 μg/kg of dry matrix, while the ∑ PCBs ranged from detection limit to 36 μg/kg of dry matrix. Linear relationships were found between PAHs concentration and organic matter percentages (R2 = 0.60) and water content and organic matter percentages (R2 = 0.87). Isomeric ratios were used for discriminating between pyrolitic and petroleum origin. The principal component analysis (PCA) has been conduced to discriminate the different sampling sites in internal or external harbor area.  相似文献   

8.
Monjolinho River is an important water body located in the central urban region of São Paulo State in southeast Brazil. The present work reports a 4-year study related to spatio-temporal distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in surface water and sediment samples of Monjolinho River. A total of 25 sampling campaigns for water, and 10 sampling campaigns for sediment collection, were performed from 2011 to 2014. In sediment samples, total PAHs were found in the range of 2.25 µg kg?1–26,253.87 µg kg?1, while n-alkane concentrations ranged from 0.01 to 165.64 µg kg?1. Total PAHs' concentration in surface water was in the range of 0.17–1,348.35 ng L?1, while n-alkanes were detected in the range of 6.17–316.15 µg L?1. Principal component analysis was used as a statistical tool for summarizing and interpreting a huge quantity of data. It was observed that concentrations of contaminants increased along the river course in urban zone. Distribution indexes were calculated to identify possible sources of carbon pool that pointed towards petrogenic, pyrogenic, and biogenic sources. The overall concentrations of PAHs and n-alkanes were low compared to many previous studies done elsewhere and were mostly below the threshold effects level except in very few occasional cases, while probable effect level was violated in 1 sample during 4 years. Although adverse impacts are unexpected due to overall low contaminant concentrations, unexpected industrial, and sewage discharges make it risky for safer use as a drinking water resource, especially in dry conditions.  相似文献   

9.
This article covers the status of PAH concentrations and composition patterns in surface water, air, sediment, and soil samples from South Africa. Despite South Africa being one of the largest economies in Africa, it is only recently that researchers have reported the presence and possible sources of these compounds in various environmental compartments. This article discusses the potential hotspots and possible sources of these compounds. It also compares the total PAH concentrations and percentage composition patterns of the individual PAHs. So far, total concentrations of five PAHs determined in sediment samples from the Johannesburg area, Gauteng Province, gave the highest concentrations ranging from 1233–136,276 μg kg?1. The total concentration of six PAHs found in runoff water from the Venda region of the Limpopo Province, gave the highest concentration with a range of 28.7–3192.6 μg L?1. The decreasing order of percentage composition of PAHs in water samples tended to follow 3-ring > 4-ring > 2-ring PAHs. In soil samples the decreasing order of percentage composition followed 4-ring > 3-ring > 5-ring > 2-ring > 6-ring PAHs. The total freely dissolved PAHs followed solubility of the compounds with 2-ring > 3-ring > 4-ring > 5-ring > 6-ring PAHs. Some of the identified sources of PAHs using molecular ratios include petrogenic emissions such as from petroleum combustion from vehicles and pyrolytic sources such as coal combustion by coal powered power stations, as well as iron and steel production industries. Oil spills were also identified as major PAH contributor in runoff water from the Venda region of the Limpopo Province.  相似文献   

10.
Residue levels and spectrum of polycyclic aromatic hydrocarbons (PAHs) were determined in smoked fish, and canned smoked fish, collected from grocery shops from Cairo, Giza, Menoufya, and Ismailia governorates, Egypt. Residues of PAHs were monitored using gas liquid chromatography, equipped with a flame ionization detector. The concentrations of ∑13 PAHs in the smoked fish and the canned smoked fish ranged from 36.06–547.1 μg/kg, respectively. Benzo(a)pyrene was not detected in smoked canned fish, while its mean residues in smoked fish amounted to 1.1 μg/kg, corresponding to one fifth of the maximum tolerable limit of 5 μg/kg established by EU. The congeners profile showed that the sources of PAHs in the two brands of smoked fish are mainly petrogenic. Based on smoked fish the daily intake of 13 PAHs and benzo(a)pyrene were 45.59 μg/day and 0.092 μg/day, respectively, while for canned smoked fish the intake was fifteen times lower (3 μg/day), and the intake of benzo(a) pyrene is zero μg/day. Results showed that the consumption of smoked fish would pause some risk to consumers; meanwhile canned smoked fish showed no risk to Egyptian consumers.  相似文献   

11.
ABSTRACT

In Hungary, the nationwide monitoring of PM10-bound polycyclic aromatic hydrocarbons (PAHs) in ambient air is great importance for a number of reasons related to human health, the environment and compliance with European Union legislation. However, the measurement of PAH concentrations in PM2.5 aerosol fraction has not been carried out. Therefore, the concentration, distribution and sources of PM2.5-bound PAHs at different urban sites of Gy?r were investigated in a heating season. The total PAH concentrations (sum of 19 individual PAH compounds) ranged from 1.32 to 37.27 ng/m3 with the mean value of 10.54 ng/m3. The high molecular weight PAHs with 5 and 6 aromatic rings were the most abundant PAHs in PM2.5 aerosol samples, which averaged 82% of total PAHs. Using benzo(a)pyrene (BaP) equivalent approach on the concentration data of carcinogenic PAH species, BaP and indeno(1,2,3-cd)pyrene contributed the highest carcinogenic exposure equivalent (1.25 and 0.19 ng/m3 on average). However, the incremental lifetime cancer risk (ILCR) values for resident children and adults indicated low-potential cancer risk (ILCR < 10?6). The source apportionment results reflected that the major sources of PAH compounds in the Gy?r atmosphere were fossil fuel combustion and vehicle emissions.  相似文献   

12.
The objective of this article was to determine the structure of microbial communities and the activity of dehydrogenases in soil samples contaminated with four polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, anthracene, and pyrene, in the amount of 0, 1000, 2000, and 4000 mg kg?1soil DM. Organic substances—cellulose, sucrose, and compost—were added to the samples in the amount of 0 and 9 g kg?1soil DM. The experiment was performed in a laboratory on samples of loamy sand. Indices of colony development (CD) and eco-physiological diversity (EP) of organotrophic bacteria, soil resistance (RS), and soil resilience (RL) were calculated. Soil contamination with PAHs differentiated the structure of organotrophic bacteria, and the lowest CD and EP values were noted in soil samples containing pyrene. PAHs inhibited the activity of dehydrogenases, and pyrene exerted the most inhibitory effect on enzyme activity. Dehydrogenase activity was determined mainly by the applied PAH dose, the date of analysis and the type of organic substance added to soil. Low RL values indicate that exposure to PAHs induces long-term changes in dehydrogenase activity.  相似文献   

13.
The levels of 13 polycyclic aromatic hydrocarbons (PAHs) and 12 polychlorinated biphenyls (PCBs) were studied in oil shale ash samples gathered after heating oil shale samples collected from major deposit sites in Jordan. All analyses were carried out using GC/MS instrument. The results showed that the total concentration of the studied polycyclic aromatic hydrocarbon (PAHs) was the highest (75.99–317.53 μg /kg) at the lowest temperature range (200–400°C) and it decreased as the temperature increased. For the heating temperature range 400–600°C the concentrations were all decreased to below the limit of quantification while none of the samples contained any of the studied PAHs at the highest temperature range 600–800°C. While all the analyzed samples did not contain any of the studied 13 compounds of PCBs at different temperature ranges.

Recoveries of PAHs and PCBs were found between 82–106% and 91–114%, respectively. Precision of the analytical method for both PAHs and PCBs, calculated as relative standard deviation (RSD), ranged from 0.95–7.08% and 0.78–9.03%, respectively. The limit of detection values for PAHs and PCBs were between 0.006–0.070 μg/kg and 0.149–0.330 μg/kg, respectively.

The total estimated cancer risks of exposure to PAHs in the soil samples were ranged from 9.13 × 10?7 to 2.15 × 10?6. By multiplying these numbers of cancer risks of exposure to oil shale ash sample-PAHs by 106, it is possible to determine the maximum theoretical number of cancer cases per million of people. The maximum estimated cancer risks cases determined in this study (2 out of 1 million) are well within the acceptable range of excess cancer risk specified by the US Environmental Protection Agency.  相似文献   

14.
Preliminary analysis was performed to assess contamination levels in roadside soils, distribution behavior and human exposure with Polycyclic Aromatic Hydrocarbons (PAHs) during summer, winter, rainy, and autumn during 2013 in one of the developing cities of northern India. The concentration of PAHs was measured at ten different locations (at 1, 2, and 3 m) from roadside soil. Recovery range was 30% and 80% with lower value corresponding to the lower molecular weight PAHs compound. Identification and quantification of PAHs was done by GC-FID. Average PAHs concentration (city average) was found to be 16.53, 4.04, 17.49, and 7.82 μg g?1, during summer, winter, autumn, and the rainy seasons, respectively. Average concentration of low and high carcinogenic PAHs during summer, winter, autumn, and rainy was 5.1 and 31.29, 2.1 and 6.4, 4.74 and 35.08, 3.97 and 12.77μg g?1, respectively. The average ratio of low and high carcinogenic PAHs was found to be 1:6, 1:3, 1:7.6, and 1:3.21 during summer, winter, autumn, and the rainy seasons at most intercepts. Dib(ah)A and B(a)P were the two individual PAHs found in highest concentration during summer, winter, and the rainy seasons, whereas B(a)P and IP were individual PAHs found in highest concentration during autumn. It was also analyzed that high carcinogenic PAHs concentration was quite higher (around 85%) in comparison to low carcinogenic PAHs (around 15%) at most intercepts. This article also deals with the behavior of PAHs at places of average/high population and traffic density intercepts. Five-ringed PAHs were in highest concentration at all intercepts and seasons. Two-tailed T test was applied for authenticity of the data and results. Toxic equivalency factor of B(a)P and Dib(ah)A was maximum as compared to other PAHs.  相似文献   

15.
Lipopeptide biosurfactant produced by Pseudomonas aeruginosa Lbp 3 strain isolated from petroleum contaminated soil was investigated for its potential to enhance bioavailability, and hence, the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil microcosms. Experiments were conducted on a soil spiked with equal parts of the PAHs Phenanthrene, Fluoranthene, and Pyrene to a final concentration of 1200 mg of total PAHs per kg of dry soil. To evaluate biodegradation enhancement efficiency, 50 g spiked soil samples were supplemented with 50 mgL?1, 100 mgL?1, 300 mgL?1, and 1000 mgL?1of lipopeptide dissolved in 30 mL of MSM, and incubated for 40 days at 30°C in darkness. Statistically significant (P < 0.05) biodegradation rates were observed in all the amended microcosms in comparison to the unamended controls. Maximal biodegradations (> 96% of Phenanthrene and Fluoranthene and > 93% of Pyrene) were observed in the soil microcosms supplemented with 1000 mgL?1and 50 mgL?1 lipopeptide. The effect of substrate interactivity of the PAHs on the biodegradation kinetics was also tested in comparison with sole substrate microcosms. Competitive inhibition of the biodegradation of low molecular weight PAHs was observed as a result of substrate interactivity in the multisubstrate system.  相似文献   

16.
PAH (Polycyclic Aromatic Hydrocarbons) analyses were carried out on samples from two Wastewater Treatment Plants (WWTPs) in Lombardy, similar for treatment sequences but fed on different influents: industrial component accounts for 70% at Alto Seveso plant while it is absent in Nosedo plant. Sampling concerned the influent and the effluent from activated sludge reactor and the final effluent after disinfection (ozonation for Alto Seveso and peracetic acid treatment for Nosedo). The concentrations of total PAHs were 5.3 ± 4.0 μg L?1 and 2.4 ± 1.3 μg L?1 in Alto Seveso and Nosedo influent, respectively. The lowest molecular weight PAHs had the highest concentrations in both plants; acenaphthene and naphthalene were the most important components in the influent to Alto Seveso and Nosedo WWTPs, respectively. The higher molecular weight compounds had the lowest concentrations and benzo(g,h,i)perylene and dibenzo(a,h)anthracene were never detected. Most of the PAH load entered biological treatment in dissolved form. For both plants PAHs were mostly removed in the biological section (96.5% and 89.5% for Alto Seveso and Nosedo, respectively), while disinfection had a minor role. Peracetic acid (Nosedo) seemed more efficient than ozone (Alto Seveso) in the removal of PAHs (4.18% and 0.89%, respectively). It is now necessary to confirm this result by using the same effluent for the two disinfection treatments.  相似文献   

17.
ABSTRACT

Rapid industrialization and urbanization in the west coast of Peninsular Malaysia has caused increasing pollution particularly of petroleum and petroleum by-products. Surface sediment and mangrove oyster (Crassostrea belcheri) were collected from five mangrove ecosystems in the west coast of Peninsular Malaysia and investigated for bioavailability of polycyclic aromatic hydrocarbons (PAHs). Sampling locations were selected from both remote areas with few or no previous records of petroleum pollution such as Pulau Merambong and polluted areas that are under international attention such as Klang mangrove ecosystem. PAH fractions were obtained through soxhlet extraction and two-step column chromatography and the fractions were injected to gas chromatography-mass spectrometry (GC-MS) for analysis. The concentrations of PAHs ranged from 151 to 4973 ng g?1 dw in the sediments, while from 309 to 2225 ng g?1 dw in the oysters. When tested for diagnostic ratios, a predominance of pyrogenic source PAHs was detected in the sediments, whereas PAHs in the oysters had mixed petrogenic and pyrogenic sources. A significant correlation (p < 0.05) was found between high molecular weight (HMW) PAHs in the sediments and oysters and biota accumulation factors (BAFs) of PAHs were approaching or exceeding unity indicating the ability of mangrove oyster in bioaccumulation of PAHs. Overall, this study indicates that mangrove oyster (C. belcheri) can be used as a biomonitor species for PAHs in an aquatic environment.  相似文献   

18.
BACKGROUND: Sorption of polycyclic aromatic hydrocarbons (PAHs) on activated carbon and the Macronet polymeric sorbent MN200 was investigated to determine the effectiveness of each sorbent for removal of pollutants from aqueous solution and their possible use as sorbent materials for groundwater. Experiments were carried out to determine the loading capacities of a family of PAHs (acenaphthene, anthracene, fluoranthene, fluorene, naphthalene and pyrene). RESULTS: Activated carbon was the more effective sorbent, with maximum loadings of PAHs between 90 and 230 g kg?1, while MN200 resin showed values of 25–160 g kg?1. Loading isotherms based on the Langmuir, Freundlich and Redlich–Peterson models were determined. The hydrophobic character of the pollutants appeared as an important parameter related to the sorption process. Equilibrium and kinetic parameters were used to determine the retardation factors for each PAH. CONCLUSION: The calculated values for the simulation of barrier thickness using both sorbents, taking into account EU requirements for PAHs in groundwater effluent, were perfectly reasonable as a first estimate. The better kinetic properties of MN200 are evident in lower hydraulic residence times and consequently in a lower barrier thickness. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
ABSTRACT

In this study, marble powder was evaluated as a cheap, easy to prepare and efficient green sorbent for miniaturized solid phase extraction of polycyclic aromatic hydrocarbons (PAHs) and determination by high performance liquid chromatography with UV detection. Under the optimized experimental conditions, wide linear dynamic ranges were achieved in the range of 0.1–200 μg L?1, with correlation coefficient higher than 0.996. The limits of detection and quantification for target analytes could reach 16.3–120.2 and 54.3–398 ng L?1, respectively. The method precision based on obtained RSD values in the range of 4.9–7.9% (n = 8) was very satisfactory.  相似文献   

20.
The concentration of polycyclic aromatic hydrocarbons (PAHs) was measured in the sediment, a bivalve (Mactra veneriformis), fecal materials (feces and pseudofeces) of M. veneriformis, and excrement (feces) of an annelid (Marphysa sanguinea), which were collected in the Yoro tidal flat in Chiba, Japan. The total PAH concentration was 350 μg/kg-dry in the fecal materials of M. veneriformis and 977 μg/kg-dry in the excrement of M. sanguinea; these values were about 8–23 times as large as that of the sediment. The concentration of the fecal materials stayed constant even after 24 h, whereas that of the excrement decreased to half in 2 h. The sediment and fecal materials of M. veneriformis showed a high level of PAHs with lower molecular weight such as phenanthrene, fluoranthene, and pyrene; on the other hand, the excrement of M. sanguinea showed a high level of PAHs with higher molecular weight such as chrysene, benzo[b]fluoranthene, benzo[a]pyrene, and perylene. The logarithm of the concentration factor, defined as the ratio of the concentration of individual PAHs in the fecal materials or excrement to that in the sediment, correlated with the logarithm of the n-octanol/water partition coefficient for the PAHs (R 2 = 0.803). These findings indicate that the sources and characteristics of the fecal materials of M. veneriformis and the excrement of M. sanguinea are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号