首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
银川市臭氧污染特征及影响因素分析   总被引:2,自引:2,他引:0  
依据2014年银川市6个自动空气监测子站的监测数据,分析银川市臭氧浓度的污染特征,并对夏季臭氧相关气象因子进行分析。结果表明,从监测点位来看,银湖巷站点臭氧浓度最高,宁安大街次之,宁化生活区臭氧浓度最低。从时间变化规律来看,银川市臭氧浓度呈夏季最高,春季次之,秋季、冬季污染较低,其中臭氧月均浓度最大值出现在5月、6月。臭氧日变化呈单峰变化规律,夜间臭氧浓度较低,白天臭氧浓度较高。夏季臭氧浓度与二氧化氮、相对湿度呈显著的负相关性,与气温、风速呈显著正相关性。  相似文献   

2.
利用同期近地面臭氧、NO2及气象数据,对比研究了黄土高原及周边不同背景环境城市(包括鄂尔多斯、榆林、银川、延安、西安、咸阳)臭氧浓度变化特征以及NO2、气象要素对其的影响,发现2016—2020年各城市臭氧浓度年际变化均呈现先上升后下降的趋势,5 a平均浓度从高到低排序为咸阳>西安>榆林>银川>鄂尔多斯>延安;各城市2017年(鄂尔多斯2018年)臭氧浓度最高、超标倍数最大,超标污染日数也最多;西安、咸阳2016—2019年出现超标,榆林、银川2017年、2018年超标,鄂尔多斯2018年超标,延安未出现超标.臭氧浓度月变化、日变化呈“单峰”结构,延安月均峰值出现在5月或6月,其他城市出现在6月或者7月,各城市于12月出现波谷;高纬度地区比低纬度地区早1个月出现臭氧超标;臭氧浓度日最高值出现在15:00—16:00,最低值出现07:00—08:00,夏季日最高值、最低值出现的时间要比冬季早;日变化幅度夏季最大,冬季最小.NO2日平均浓度及最大值从高到低排序:西安>咸阳>延安>...  相似文献   

3.
臭氧是城市光化学烟雾的主要成分,同时也是重要的温室气体,因此臭氧污染已经成为城市空气质量的重要因素.对重庆市渝中区2015年3个空气质量自动监测点臭氧浓度进行比较,并分析了臭氧与环境、日照、气温、挥发性有机物、NO2、PM10、PM2.5的相关性.结果表明:臭氧浓度与监测点周围环境有关;臭氧浓度呈典型的季节变化趋势,与日照、气温呈明显的正相关;臭氧浓度小时值变化出现明显的日变化规律;臭氧浓度与挥发性有机物呈正相关,与NO2、PM10、PM2.5有较好的负相关性.  相似文献   

4.
随着环境空气质量的改善同时,臭氧污染对人类生活造成的不利影响逐渐显现.运用眉山市东坡区"十三五"期间国家城市环境空气质量监测点位监测数据,对眉山市东坡区臭氧污染过程的变化特征进行简要分析.近5年来,臭氧污染天数逐年增多,臭氧污染已然成为制约眉山市东坡区环境空气优良率提升的重要因素.结合臭氧浓度变化规律、氮氧化物浓度变化...  相似文献   

5.
2015年中国近地面臭氧浓度特征分析   总被引:15,自引:9,他引:6  
根据2015年全国189个城市的近地面臭氧浓度数据,使用ArcGIS等软件处理,从不同时空、地形特征、温度等方面分析得出中国近地面臭氧浓度的变化特征.2015年中国近地面的臭氧浓度变化呈先增高后降低的趋势,各季节中浓度大小关系呈夏季 > 秋季 > 春季 > 冬季的变化规律,且在7月达到全年最高值.中国各行政区中,华东、华南、华北地区的臭氧污染较为严重.在经纬度变化的影响方面,经度变化对近地面臭氧浓度的影响不大,而纬度变化使臭氧浓度变化明显;在同一纬度的3种不同地形对比中发现,不同的地形给近地面臭氧浓度带来的影响微乎其微.温度和近地面臭氧浓度的变化呈现良好的正相关关系.  相似文献   

6.
利用2013—2018年沧州市臭氧监测数据和气象数据,运用相关和百分位阈值法,分析了沧州市臭氧污染特征及气象因子对臭氧污染的影响。结果表明:沧州市臭氧浓度呈现明显的季节变化特征,春季和夏季最高;臭氧超标日数也集中在春夏季,臭氧浓度和超标日数均呈逐年增加趋势;在所有气象因子中气温与臭氧相关性最强,较高的气温是沧州市臭氧发生的必要条件,气温越高越容易导致高浓度的臭氧污染;绝大多数情况下,臭氧浓度与相对湿度呈负相关关系;降水量级及降水性质都会对臭氧浓度造成明显影响;风向与风速影响臭氧污染物的水平传输和垂直扩散,冬春季影响明显;春季臭氧浓度的增加与风速增大导致的混合层高度增加有重要的关系;颗粒物通过影响到达近地面的气象要素间接影响臭氧浓度。沧州地区臭氧超标日的出现伴随着一系列气象条件的共同改变,包括晴天少雨、混合层高度增加、风速增大、相对湿度降低及气温升高等气象特征,污染结束则伴随着相反的气象变化。  相似文献   

7.
为揭示中国自然背景地区臭氧浓度变化特征,并以其为自然背景值指导人为活动导致的臭氧污染控制工作,该研究通过汇总统计中国15个典型自然背景地区与337个地级及以上城市2016—2020年环境空气臭氧自动监测数据,比较分析中国自然背景地区臭氧浓度的年度、季节、日内变化规律与空间分布规律. 结果表明:2016—2020年,中国自然背景地区臭氧年均浓度明显高于城市区域,但臭氧日最大8小时平均浓度的第90百分位数(简称“臭氧年90百分位浓度”)明显低于城市,自然背景地区和城市区域臭氧年均浓度同步快速提升,年均增长分别为1.5和2.0 μg/m3. 中国自然背景地区臭氧浓度季节性变化规律与城市区域存在较大差异,自然背景地区臭氧平均浓度最高值出现在春季,夏、秋、冬三季臭氧平均浓度差异不明显,与东亚环太平洋背景地区臭氧浓度季节性变化规律(春季最高、夏季最低)存在明显差异. 部分自然背景地区受人为活动排放的影响较小,臭氧浓度不存在明显的日内峰谷差,全天臭氧浓度基本保持相同水平;部分自然背景地区可能受邻近城市人为活动排放的臭氧前体物影响,臭氧浓度日内变化规律与邻近城市较为一致,存在明显的日内峰谷差. 研究显示,中国自然背景地区臭氧浓度变化规律与城市区域存在显著差异,臭氧浓度年均值升高迅速,部分自然背景地区臭氧浓度变化规律可能受邻近城市人为活动排放的臭氧前体物传输的影响.   相似文献   

8.
利用2015-2016年四川省21市(州)大气质量监测数据,探讨了四川省臭氧时空分布特征及污染特征。结果表明:四川省臭氧季节特征明显,全省夏季浓度最高,冬季浓度最低,春季秋季,攀西高原和川西高原为夏季春季冬季秋季,盆地西部O_3浓度最高,川西高原最低,全省最高值出现在成都;O_3小时浓度日变化规律均呈"单峰型"特征,7:00-8:00处于一天中的最低值,15:00左右臭氧浓度达到峰值;O_3为首要污染物的比例仅次于PM_(2.5),盆地西部臭氧污染最为严重;污染主要发生在4-10月,4-10月的臭氧超标天数占全年臭氧超标总天数90%以上。  相似文献   

9.
根据国家城市环境空气质量监测网2014-2016年监测结果,统计分析辽宁省环渤海地区5个城市26个国家环境空气质量监测点位的监测数。结果表明:2014-2016年,辽宁环渤海地区5个城市臭氧污染状况整体呈加重趋势,2016年污染状况最为严重;研究区域臭氧超标天数具有明显的季节变化特征,5-8月为主要超标月份,且5月和6月超标天数逐年升高;研究区域内代表城市臭氧日变化主要为单峰分布,5月和8月峰值浓度主要出现15-17时,1月和10月峰值浓度主要出现14-15时;主要超标月份夜间臭氧浓度较高,1月和5月呈逐年上升趋势,其中2016年5月夜间超过100μg/m3;臭氧年均值和第90百分位浓度高值区主要分布在辽宁环渤海地区中部的营口,锦州和盘锦浓度次之,大连和葫芦岛相对较低。  相似文献   

10.
利用差分吸收臭氧激光雷达、多普勒风廓线激光雷达,研究了2019年11月在广东珠海出现的一次典型臭氧污染过程前后期的时空分布特征,以及水平风向风速及垂直风速对近地面与边界层上部臭氧浓度变化的影响.结果表明:2019年11月13日的臭氧污染以低风速条件下 臭氧局地生成为主;2019年11月14日的臭氧污染以夜间残留悬空臭氧向下输送叠加地面生成为主.入夜后若近地面水平风速较小,则不利于近地面臭氧清除,地面臭氧浓度下降缓慢.若夜间边界层内存在上升气流,则有利于悬空臭氧残留的维持;若日间边界层内出现下沉气流, 则会导致残留悬空臭氧沉降,进而与新生成的臭氧叠加,加剧地面臭氧污染.污染过程中,若水平风速上升,边界层上部臭氧浓度下降不如 低层明显;若水平风速下降,边界层上部臭氧浓度上升响应也较为迟缓.  相似文献   

11.
北京市臭氧的时空分布特征   总被引:14,自引:2,他引:12  
对2012年12月~2013年11月期间北京市35个自动空气监测子站的O3浓度进行分析,探讨北京市O3浓度的时间、空间分布特征,并对夏季的一次O3高浓度过程进行了分析.结果表明,北京市O3浓度在5~8月维持相对较高浓度,其他月份则维持较低浓度.整体来看,4类功能的监测站点中O3平均浓度由高到低分别是对照点及区域点、郊区环境评价点、城区环境评价点和交通污染监控点;O3浓度日变化呈单峰型分布,一般在15:00、16:00达到峰值;O3还呈现明显的"周末效应",即周末白天时段O3浓度大于工作日浓度.北京市O3浓度城区相对较低,周边区县相对较高,生态植被优良的东北部地区浓度最高.2013年6月3日北京市发生一次O3高浓度过程,在下午西南风的作用下,榆垡、丰台花园、奥体中心和怀柔监测站O3峰值出现的时间从南到北依次滞后,且怀柔站在20:00才出现峰值,体现了这次过程中存在明显的O3输送特征.  相似文献   

12.
舟山市臭氧污染分布特征及来源解析   总被引:1,自引:0,他引:1  
臭氧及其前体物在环境空气中传输和反应过程复杂,本研究利用舟山市国控点2014年的监测数据对臭氧污染时空分布开展了统计分析,并利用CMAQ (community multiscale air quality)模型模拟了舟山市2014年臭氧污染形成,选用ISAM(integrated source apportionment method)源追踪算法计算来源贡献率.结果表明,舟山市春秋季节的臭氧浓度相对较高,浓度高值出现在午后13:00~15:00.普陀站的臭氧平均浓度最高而位于中心城区的临城站最低.臭氧总体浓度不高,但易出现单日浓度高值,其中5月臭氧超标率最高.舟山市本地臭氧形成主要受VOCs浓度控制,而源解析结果表明舟山市全年外来源占总贡献的69. 46%.本地源中,工业燃烧源、工艺过程源、道路移动源、非道路移动源的贡献率相差不大,且表现出显著的港口城市特征,船舶源、石化源、储运源分别占总贡献的4. 45%和1. 01%和1. 80%.控制臭氧污染应采取周边区域联防联控的措施,以VOCs排放源为主,不同来源协同调控的措施.  相似文献   

13.
京津唐地区臭氧时空分布特征与气象因子的关联性研究   总被引:5,自引:0,他引:5  
京津唐地区随着经济的快速发展和城市化的不断推进,臭氧污染呈现加重的趋势,深入了解臭氧浓度时空变化特征及其变化驱动机制是采取科学有效防控措施的前提和基础.本研究针对京津唐地区近地面臭氧浓度快速增加的2016年,利用卫星遥感反演数据、地面每小时监测数据及气象观测资料,分析探讨了近地面臭氧浓度时空分布及与温度、压强、蒸发量、...  相似文献   

14.
济南市区近地面臭氧浓度变化特征   总被引:4,自引:0,他引:4  
利用2003年9月~2004年8月一年内的O3连续自动监测数据,对济南市大气中O3浓度的频率分布、日变化、季变化等特征进行分析。实验结果表明,O3小时平均浓度达到《环境空气质量标准》(GB3095-1996)二级标准的频率为98.67%;O3浓度在一天中呈明显的单峰型变化规律,14:00左右达到日最高值;四季的O3浓度日变化均呈单峰型,夏季高O3浓度值出现频率较多,冬季浓度普遍较低,春季的平均浓度最高;在所监测的一年周期内,O3浓度呈现明显的单峰型变化规律:秋季逐渐降低,冬季达到最低,春季升高,夏季最高。  相似文献   

15.
上甸子本底站地面臭氧变化特征及影响因素   总被引:20,自引:3,他引:17  
利用TE Model 49C型臭氧监测仪,于2004年1月1日-12月31日,在上甸子本底站进行了地面φ(O3)的连续在线监测.分析了全年φ(O3)的变化特征及其与同期气象要素的相关关系,并对φ(O3)高值日的个例分析进行了验证.结果表明,上甸子本底站地面φ(O3)具有明显的季节变化和日变化规律,并且与同期的气象条件密切相关.主要特征:①夏初φ(O3)较高,6月的平均值达到最高,小时平均最大值可达129.7 μL/m3;而冬季φ(O3)较低,12月的平均值达到最低,小时平均最大值仅为32.7 μL/m3.②日变化趋势较为明显,在4:00-7:00出现最低值,在15:00-18:00出现最高值,变化幅度为夏季最大、冬季较小.③气温与φ(O3)呈显著正相关,夏季相对湿度与φ(O3)呈显著负相关,风向和辐射强度也与φ(O3)及其变化规律呈显著相关关系.   相似文献   

16.
为研究许昌市的臭氧(O3)污染情况及时空分布特征,对2014年-2016年许昌市3个国家环境空气监测点位的监测数据进行了统计分析.结果表明:2014年-2016年,许昌市O3污染状况整体呈加重趋势,2016年污染最为严重;O3浓度和超标天数均具有明显的季节变化特征,春末和夏季的O3污染最为严重;不同季节的O3、NO2、NO和NOx浓度日变化也不尽相同,同时O3具有明显的日变化特征,呈单峰型分布,峰值出现在14:00~15:00;并且O3与NO2具有较好的相关性.  相似文献   

17.
基于太原市2015年1月~2019年2月的空气质量监测数据,分析了太原市近地面臭氧浓度变化特征。结果表明:2015~2018年太原市臭氧年平均浓度为78.42、82.33、95.87、103.77μg/m 3,臭氧浓度存在加速上升趋势;臭氧浓度逐日变化范围为5~270μg/m 3,共有181 d超过GB 3095—2012《环境空气质量标准》二级标准限值(160μg/m 3),超标时段主要集中于5~8月份;臭氧浓度日变化呈单峰型分布,峰值与谷值时段分别为14∶00~16∶00和6∶00~7∶00;臭氧浓度有明显的月变化规律,峰值与谷值时段分别为6~7月和1月、12月;臭氧浓度还表现出显著的季节变化规律,按浓度高低依次排序为夏季、春季、秋季和冬季;臭氧浓度与NO 2、CO、PM 2.5浓度呈负相关性。  相似文献   

18.
天津市郊夏季VOCs化学特征及其时间精细化的来源解析   总被引:3,自引:3,他引:0  
夏季为环境空气中臭氧污染事件的频发时期,针对挥发性有机化合物(VOCs)及其臭氧生成潜势(OFP)的时间精细化的来源解析研究,对有效地进行臭氧污染防控具有非常重要的作用.利用2019年夏季(6~8月)天津市郊区点位监测的小时分辨率VOCs在线数据,分析臭氧污染事件和非臭氧污染时期环境受体中VOCs及其OFP的变化特征,并利用正定矩阵因子分解(PMF)模型进行精细化的来源解析研究.结果表明,夏季环境受体中VOCs平均体积分数为24.42×10-9,臭氧污染事件中的VOCs平均体积分数为27.72×10-9,较非臭氧污染时期增加15.69%.夏季总VOCs(TVOCs)的OFP为87.92×10-9,其中烯烃的OFP最高,对TVOCs的OFP的贡献达58.28%.臭氧污染事件中TVOCs的OFP为102.68×10-9,较非臭氧污染时期增加19.59%.臭氧污染事件中VOCs的来源分别为石化工业及汽油挥发(29.44%)、柴油车尾气(23.52%)、液化石油气及汽油车尾气(22.00%)、天然气及燃烧(13.41%)、溶剂使用(6.14%)和植物排放(5.49%).相比于非臭氧污染时期,液化石油气及汽油车尾气和柴油车尾气分别增长4.84%和5.29%.石化工业及汽油挥发和植物排放的贡献均表现为08:00开始上升,11:00达到最高,这与太阳辐射增强和温度不断上升密切相关.液化石油气及汽油车尾气和柴油车尾气均具有明显的早晚高峰特征,并在夜间(00:00~06:00)保持较高贡献水平.根据PMF结果并结合OFP的计算方法,解析了不同源类对臭氧生成潜势的 贡献.石化工业及汽油挥发(31.01%)和柴油车尾气(36.64%)是较高贡献源类,相比非臭氧污染时期分别增加了 1.74%和8.27%;并且石化工业及汽油挥发贡献率在臭氧污染事件发生过程的上升阶段显著增加,而在下降阶段明显下降.  相似文献   

19.
临安近地面臭氧变化特征分析   总被引:13,自引:1,他引:12  
利用2003年11月─2004年11月浙江临安区域大气本底站近地面臭氧浓度的连续监测资料,研究了地面臭氧浓度全年总体分布、季节变化、日变化及浓度频率分布规律.结果表明,该地区φ(O3)全年平均值为32.41×10-9,其日变化呈明显单峰型, 14:00左右达到最大值, 约04:00出现最小值.φ(O3)月均值在春末夏初达到最大值,在12月─次年2月出现最小值.φ(O3)各月的平均振幅在夏季达到最大,说明临安本底站夏季臭氧光化学反应比较强烈.除冬季外,其他季节该地区近地面φ(O3)均有超过《环境空气质量标准》(GB30952-1996)二级标准的情况,全年超标率为0.96%.   相似文献   

20.
中国对虾养殖系统中无机和各形态有机N、P浓度及其变化   总被引:1,自引:0,他引:1  
对中国对虾养殖系统中无机和各形态有机态N、P浓度的周日及连续7 d的动态观测,结果表明:周日变化中,NO3-N在上午5:00观测到浓度最大值;而NO2-N、NH3-N和PO4-P在下午5:00观测到最低值,次日上午5:00出现最高值,养殖体系内有机态N、P的浓度小于无机态,且有较小的变异系数。连续7 d观测结果显示DON和DIN分别约占DTN组成的44%和56%,其中NH3-N占DIN的67%,是DIN的主要组成部分;CON仅占总DON的22.5%,但相较DON和UOC有较大的变异系数;胶体态有机物质具有最高的C/N值,表明胶体有机部分中的N含量较为匮乏,而低分子有机物质中的N含量较为丰富。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号