首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
Tofacitinib (TFT), a JAK inhibitor used for the treatment of rheumatoid arthritis and other diseases, is associated with severe liver injury that is believed to be caused by its reactive aldehyde or epoxide metabolites. In this study, we synthesized six tofacitinib analogs designed to avoid the formation of reactive metabolites and evaluated their JAK3 inhibitory activity, metabolic stability, CYP3A time-dependent inhibition, and cytotoxicity. Our data indicated that purine analog 3, which showed little inhibition of CYP3A and cytotoxicity and inhibited JAK3 in the nanomolar range, could be a safer drug candidate than TFT. In addition, the results of the bioactivation study using TFT and its analogs suggest that the epoxide metabolite might contribute to TFT-induced CYP3A4 mechanism-based inhibition and hepatic toxicity.  相似文献   

2.
3.
The JAK/STAT signaling pathway is an universally expressed intracellular signal transduction pathway and involved in many crucial biological processes, including cell proliferation, differentiation, apoptosis, and immune regulation. It provides a direct mechanism for extracellular factors-regulated gene expression. Current researches on this pathway have been focusing on the inflammatory and neoplastic diseases and related drug.The mechanism of JAK/STAT signaling is relatively simple. However, the biological consequences of the pathway are complicated due to its crosstalk with other signaling pathways. In addition, there is increasing evidence indicates that the persistent activation of JAK/STAT signaling pathway is closely related to many immune and inflammatory diseases, yet the specific mechanism remains unclear. Therefore, it is necessary to study the detailed mechanisms of JAK/STAT signaling in disease formation to provide critical reference for clinical treatments of the diseases.In this review, we focus on the structure of JAKs and STATs, the JAK/STAT signaling pathway and its negative regulators, the associated diseases, and the JAK inhibitors for the clinical therapy.  相似文献   

4.
ObjectiveThis study aims to select the most effective anti-Rheumatoid Arthritis (RA) component of flavonoids from Daphne genkwa Sieb. et Zucc. by anti-inflammatory and immunomodulatory effects in vitro, and to elucidate the mechanism.MethodsThe anti-inflammatory and immunomodulatory effects of total flavonoids (TF) and four flavonoid components (genkwanin, hydroxygenkwanin, luteolin and apigenin) were determined by pharmacological approach in LPS-induced RAW 264.7 macrophages and ConA-induced T lymphocytes. Principal component analysis (PCA) was used to obtain the optimal anti-RA component in vitro. Western blot and real-time quantitative PCR (q-PCR) were used to explore the mechanisms. Finally, the in vitro anti-RA effect was verified by human rheumatoid arthritis fibroblast-like synoviocytes (FLSs).ResultsTF and four flavonoids significantly reduced the expressions of NO, iNOS, TNF-α, IL-6, IFN-γ and IL-2. PCA showed that genkwanin was the most effective anti-RA component in vitro. Genkwanin inhibited nuclear factor-κB (NF-κB) pathway by decreasing the phosphorylation levels of IKK, IκB and NF-κB, and down-regulated the expressions of iNOS, COX-2 and IL-6 mRNA. Genkwanin also inhibited the abnormal proliferation of FLSs and down-regulated the secretions of NO and IL-6.ConclusionThe most effective anti-RA component was genkwanin. Genkwanin exerts anti-RA effect through down-regulating the activation of NF-κB pathway and mRNA expressions of inflammatory mediators, and also by inhibiting the abnormal proliferation of FLSs and its NO and IL-6 secretion levels.  相似文献   

5.
BackgroundPyroptosis is identified as a novel form of inflammatory programmed cell death and has been recently found to be closely related to atherosclerosis (AS). We found that IFN regulatory factor-1(IRF-1) effectively promotes macrophage pyroptosis in patients with acute coronary syndrome (ACS). Subsequent studies have demonstrated that circRNAs are implicated in AS. However, the underlying mechanisms of circRNAs in macrophage pyroptosis remain elusive.MethodsWe detected the RNA expression of hsa_circ_0002984, hsa_circ_0010283 and hsa_circ_0029589 in human PBMC-derived macrophages from patients with coronary artery disease (CAD). The lentiviral recombinant vector for hsa_circ_0029589 overexpression (pLC5-GFP-circ_0029589) and small interference RNAs targeting hsa_circ_0029589 and METTL3 were constructed. Then, macrophages were transfected with pLC5-GFP-circ_0029589, si-circ_0029589 or si-METTL3 after IRF-1 was overexpressed and to explore the potential mechanism of hsa_circ_0029589 involved in IRF-1 induced macrophage pyroptosis.ResultsThe relative RNA expression level of hsa_circ_0029589 in macrophages was decreased, whereas the N6-methyladenosine (m6A) level of hsa_circ_0029589 and the expression of m6A methyltransferase METTL3 were validated to be significantly elevated in macrophages in patients with ACS. Furthermore, overexpression of IRF-1 suppressed the expression of hsa_circ_0029589, but induced its m6A level along with the expression of METTL3 in macrophages. Additionally, either overexpression of hsa_circ_0029589 or inhibition of METTL3 significantly increased the expression of hsa_circ_0029589 and attenuated macrophage pyroptosis.ConclusionOur observations suggest a novel mechanism by which IRF-1 facilitates macrophage pyroptosis and inflammation in ACS and AS by inhibiting circ_0029589 through promoting its m6A modification.  相似文献   

6.
IntroductionAllogenic hematopoietic stem cell transplantation is a curative option for malignant and non-malignant pediatric diseases. Serotherapy is often employed to avoid graft-versus-host disease (GvHD) on one hand and graft rejection on the other hand. Therapeutic drug monitoring is increasingly used to allow for more precise dosing especially in pediatric patients due to their specific pharmacological characteristics. Application of T-cell directed antibodies is not routinely monitored, but may benefit from more precise dosing regimens.MethodsTwo different preparations of rabbit anti-thymocyte globulin (rATG), Thymoglobuline® and ATG-F (Grafalon®), are frequently used to prevent GvHD in pediatric patients by in vivo T-cell depletion. Total rATG levels and active rATG levels were analyzed prospectively in pediatric patients undergoing HSCT. Clinical and laboratory outcome parameters were recorded.ResultsrATG levels were measured in 32 patients, 22 received thymoglobuline and 10 received ATG-F. The median total peak plasma level was 419.0 µg/ml for ATG-F and 60.4 µg/ml for thymoglobuline. For ATG-F, exposure could be predicted from the calculated dose more precisely than for thymoglobuline. Active peak plasma levels neither of ATG-F, nor of thymoglobuline correlated significantly with the number of lymphocytes prior to serotherapy. There was no significant difference in incidence of aGvHD, cGvHD, rejection, mixed chimerism or viral infections in the two cohorts. However, in our cohort, patients with high thymoglobuline exposure showed a compromised reconstitution of T cells.ConclusionsATG-F and thymoglobuline show different pharmacological and immunological impact in children, whose clinical significance needs to be investigated in larger cohorts.  相似文献   

7.
8.
BackgroundThe endotoxin tolerance (ET) of Kupffer cells (KCs) is an important protective mechanism for limiting endotoxin shock. As a key anti-inflammatory molecule, the roles and mechanism of Forkhead protein O3a (Foxo3a) in ET of KCs are not yet well understood.MethodsET and nonendotoxin tolerance (NET) KCs models were established in vitro and in vivo. The levels of cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression and phosphorylation levels were detected by western blotting (WB). Changes in the localization of nuclear factor kappa B (NF-κB) and Foxo3a in KCs were detected by immunofluorescence assays. KCs apoptosis and survival rates were detected by flow cytometry and an automatic cell counter, respectively.ResultsThe activity of NF-κB and the levels of p-Foxo3a and tumor necrosis factor (TNF-α) in the ET group were significantly lower than those in the NET group, while the levels of Foxo3a and interleukin 10 (IL-10) in the ET group were significantly higher than those in the NET group. Overexpression of Foxo3a or the use of a phosphatidylinositol-3-hydroxykinase (PI3K) inhibitor suppressed the activation of NF-κB by decreasing the levels of p-Foxo3a by inhibiting the activity of PI3K/AKT, which improved the tolerance of KCs and mice to endotoxin. In contrast, silencing Foxo3a or the use of a PI3K agonist reduced the tolerance of KCs and mice to endotoxin. The PI3K agonist counteracted the inhibitory effects of Foxo3a overexpression on NF-κB, impairing the tolerance of KCs to endotoxin.ConclusionsThe on-off action of Foxo3a in the ET of KCs depends on the PI3K/AKT pathway.  相似文献   

9.
BackgroundIschaemic stroke is a lethal cerebrovascular disease that occurs worldwide. Astilbin is a natural flavonoid compound with various physiological activities. The purpose of this study was to investigate the neuroprotective effects of Astilbin after cerebral ischaemia reperfusion (I/R) injury.MethodsThe oxygen and glucose deprivation (OGD) model was used to simulate cerebral I/R injury in vitro. Cell viability was measured via CCK-8 and LDH release assays. Cell apoptosis was measured via Hoechst 33258 staining and flow cytometry assays. ROS was detected via flow cytometry assay. The protein expression levels were determined by western blotting. The middle cerebral artery occlusion (MCAO) model was used to simulate cerebral I/R injury in vivo. Cerebral ischaemic volume was measured by TTC staining. The Zea-Longa score, rota-rod test, and foot-fault test were used to evaluate behavioural changes and neurological deficits in rats.ResultsAstilbin significantly enhanced cell viability and decreased LDH release after OGD treatment in vitro. Astilbin effectively curbed cell apoptosis induced by OGD via inhibiting the activation of caspase-3, decreasing the ratio of Bax/Bcl-2 and decreasing FADD. Astilbin also inhibited OGD-induced inflammation by suppressing ROS-NLRP3 inflammasome axis activation. Further results revealed that Astilbin could suppress the MAPK pathway and activate the PI3K/AKT pathway. Finally, Astilbin significantly reduced the cerebral infarction volume and relieved neurological deficits in rats in vivo.ConclusionAstilbin could defend against cerebral I/R injury by inhibiting apoptosis and inflammation via suppressing the MAPK pathway and activating the AKT pathway.  相似文献   

10.
《Saudi Pharmaceutical Journal》2022,30(10):1405-1417
BackgroundThe therapeutic activity of Glyceryl trinitrate (GTN) is mainly regulated by liberating nitric oxide (NO) and reactive nitrogen species (RNS). During this biotransformation, oxidative stress and lipid peroxidation inside the red blood cells (RBCs) occur. Hemoglobin tightly binds to NO forming methemoglobin altering the erythrocytic antioxidant defense system.AimThe principal objective of our research is to show the ameliorating effect of l-ascorbic acid for the deleterious effects of chronic administration of nitrovasodilator drugs used in cardiovascular diseases such as oxidative stresses and tolerance.MethodWe studied some biochemical parameters for the oxidative stress using groups of high sucrose/fat (HSF) diet Wistar male rats chronically orally administered different concentrations of Isosorbide-5-mononitrate (ISMN) 0.3 mg/kg, 0.6 mg/kg and 1.2 mg/kg. Afterwards, we evaluated the role of l-ascorbic acid against these biochemical changes in cardiac tissues.ResultsChronic treatment with organic nitrates caused elevated serum levels of lipid peroxidation, hemoglobin derivatives as methemoglobin and carboxyhemoglobin, rate of hemoglobin autoxidation, the cellular levels of the pro-inflammatory cytokines marker (NF-κB) and apoptosis markers (caspase-3) in the myocardium muscles in a dose-dependent manner. Meanwhile, such exposure caused a decline in the enzymatic effect of SOD, GSH and CAT accompanied by a decrease in the level of mitochondrial oxidative stress marker (nrf2) in the myocardium muscles and a decrease in the serum iron and total iron-binding capacity (TIBC) in a dose-dependent manner. Concomitant treatment with l-ascorbic acid significantly diminished these changes for all examined parameters.ConclusionChronic administration of organic nitrates leads to the alteration of the level of oxidative stress factors in the myocardium tissue due to the generation of reactive oxygen species. Using l-ascorbic acid can effectively ameliorate such intoxication to overcome nitrate tolerance.  相似文献   

11.
《Saudi Pharmaceutical Journal》2022,30(10):1387-1395
BackgroundMuscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.  相似文献   

12.
ObjectiveDiurnal variation of symptoms are observed in rheumatoid arthritis, especially in productions of cytokines that show peak concentrations during mid night. In contrast, cytokines of collagen-induced arthritis (CIA) mice increase in daytimes under Mid-light condition. By using chronotherapy, differences in drug efficacies according to administration time of Baricitinib, a wide ranged cytokine blocker, were examined in CIA mice.MethodsCIA mice were administered a dose of 3 mg/kg of Baricitinib once a day at zeitgeber time (ZT) 0 or ZT12 for 21 days. Arthritis scores, histopathology and factors related to joint destruction in sera were examined. Phosphorylation of STAT3 in liver, expressions of cytokines in spleen, and Interleukin (IL)-6 and tumor necrosis factor (TNF)-α in sera were measured.ResultsIn CIA mice, diurnal variations were observed both in expressions of cytokines and phosphorylation of STAT3. Arthritis scores of ZT0/12 group decreased from day3 as compared to untreated mice, and those of ZT0 group significantly decreased as compared to ZT12 group from day12. Pathological findings, immunohistochemistry of cytokines and Receptor activator of nuclear factor kappa-Β ligand (RANKL)/osteoprotegerin ratio in sera well reflected results of arthritis scores. Diurnal variation of STAT3 phosphorylation was suppressed in ZT0 group. At ZT2, expressions of IL-6/Interferon-γ/TNF/granulocyte–macrophage colony-stimulating factor in ZT0 group were significantly decreased as compared to untreated mice, though not in ZT12 group. In ZT0 group, IL-6 and TNF-α in sera were decreased for longer time than that in ZT12 group.ConclusionChronotherapy using Baricitinib targeting cytokine secretions is effective in CIA mice. Clinical applications of chronotherapy can be expected to enhance the drug efficacy.  相似文献   

13.
BackgroundAcute glomerulonephritis (AGN) is a common disease in children, which places a huge burden on developing countries. The prognosis of it may not always be good. However, the clinical characteristics of AGN with nephrotic syndrome (NS) at onset have not been fully clarified.MethodsOne hundred and thirteen cases were analyzed retrospectively. Clinical data, pathological results and prognosis between AGN with NS (AGN-NS) and AGN without NS (AGN-no-NS) were compared.ResultsTwenty (17.7%) of 113 patients were AGN-NS. The patients with AGN-NS were more likely to have hypertension (55.0% vs. 25.8%) and acute kidney injury (AKI) (50.0% vs. 17.2%). AKI was significantly related to the manifestation of AGN-NS in children (OR = 3.812, P = 0.040). Compared with the AGN-no-NS, the immunosuppressive treatments were more common in AGN-NS. A more severe pathological grade was significantly related to lower C3 fraction, estimated glomerular filtration rate (eGFR), and AKI, but not to the performance of AGN-NS. There was no difference in prognosis between the two groups.ConclusionsAKI was significantly associated with AGN-NS. The prognosis of AGN-NS and AGN-no-NS in our study was almost good. Given the fact that AGN-NS patients are more likely to use immunosuppressive therapy, the long-term outcome of AGN-NS warrants further research.  相似文献   

14.
Type I interferons play a critical role in host defense against influenza virus infection. Interferon cascade induces the expression of interferon-stimulated genes then subsequently promotes antiviral immune responses. The microRNAs are important regulators of innate immunity, but microRNAs-mediated regulation of interferon cascade during influenza infection remains to be fully identified. Here we found influenza A virus (IAV) infection significantly inhibited miR-93 expression in alveolar epithelial type II cells through RIG-I/JNK pathway. IAV-induced downregulation of miR-93 was found to upregulate JAK1, the target of miR-93, and then feedback promote antiviral innate response by facilitating IFN effector signaling. Importantly, in vivo administration of miR-93 antagomiR markedly suppressed IAV infection, protecting mice form IAVs -associated death. Hence, the inducible downregulation of miR-93 feedback suppress IAV infection by strengthening IFN-JAK-STAT pathway via JAK1 upregulation, and in vivo inhibition of miR-93 bears considerable therapeutic potential for suppressing IAV infection.  相似文献   

15.
IntroductionLiver injury induced by burn plus delayed resuscitation (B + DR) is life threatening in clinical settings. Mitochondrial damage and oxidative stress may account for the liver injury. MitoQ is a mitochondria-targeted antioxidant. We aimed to evaluate whether MitoQ protects against B + DR-induced liver injury.MethodsRats were randomly divided into three groups: (1) the sham group; (2) the B + DR group, which was characterized by third-degree burn of 30% of the total body surface area plus delayed resuscitation, and (3) the treatment group, in which rats from the B + DR model received the target treatment. MitoQ was injected intraperitoneally (i.p) at 15 min before resuscitation and shortly after resuscitation. In the vitro experiments, Kupffer cells (KCs) were subjected to hypoxia/reoxygenation (H/R) injury to simulate the B + DR model. Mitochondrial characteristics, oxidative stress, liver function, KCs apoptosis and activation of the NLRP3 inflammasome in KCs were measured.ResultsB + DR caused liver injury and oxidative stress. Excessive ROS lead to liver injury by damaging mitochondrial integrity and activating the mitochondrial DNA (mtDNA)-NLRP3 axis in KCs. The oxidized mtDNA, which was released into the cytosol during KCs apoptosis, directly bound and activated the NLRP3 inflammasome. MitoQ protected against liver injury by scavenging intracellular and mitochondrial ROS, preserving mitochondrial integrity and function, reducing KCs apoptosis, inhibiting the release of mtDNA, and suppressing the mtDNA-NLRP3 axis in KCs.ConclusionMitoQ protected against B + DR-induced liver injury by suppressing the mtDNA-NLRP3 axis.  相似文献   

16.
17.
《Saudi Pharmaceutical Journal》2021,29(11):1289-1302
BackgroundGlioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy.MethodsTarget prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0.ResultsWe found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR.ConclusionThis study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.  相似文献   

18.
ObjectiveIschemic stroke is one of the leading causes of death globally, and inflammation is considered as a vital contributor to the pathophysiology of ischemic stroke. Recently, microRNA-421-3p-derived macrophages is found to promote motor function recovery in spinal cord injury. Here, we explored whether microRNA-421-3p is involved in inflammation responses during cerebral ischemia/reperfusion (I/R) injury and its molecular mechanism.MethodsAn in vivo experimental animal model of intraluminal middle cerebral artery occlusion/reperfusion (MCAO/R) and in vitro model of microglial subjected to oxygen-glucose deprivation and reoxygenation (OGD/R) were used. The effects of microRNA-421-3p on cerebral I/R injury and its underlying mechanism were detected by quantitative real-time PCR, western blotting, immunofluorescence staining, RNA immunoprecipitation, flow cytometry, luciferase reporter assay, and bioinformatics analysis.ResultsWe find that microRNA-421-3p is significantly decreased in cerebral I/R injury in vitro and in vivo. Furthermore, overexpression of microRNA-421-3p evidently suppresses pro-inflammatory factor expressions and inhibits NF-κB p65 protein expression and nuclear translocation in BV2 microglia cells treated with OGD/R. However, microRNA-421-3p neither promotes p65 mRNA expression, nor affects p65 mRNA or protein stability. Moreover, we find the m6A ‘reader’ protein YTH domain family protein 1 (YTHDF1) is the specific target of microRNA-421-3p, and YTHDF1 specifically binds to the m6a site of p65 mRNA to promote its translation.ConclusionmicroRNA-421-3p prevents inflammatory response in cerebral ischemia/reperfusion injury through targeting YTHDF1 to inhibit p65 mRNA translation. These findings provide novel insights into understanding the molecular pathogenesis of cerebral I/R injury.  相似文献   

19.
《药学学报(英文版)》2020,10(8):1414-1425
HuR (human antigen R), an mRNA-binding protein responsible for poor prognosis in nearly all kinds of malignancies, is a potential anti-tumor target for drug development. While screening HuR inhibitors with a fluorescence polarization (FP) based high-throughput screening (HTS) system, the clinically used drug eltrombopag was identified. Activity of eltrombopag on molecular level was verified with FP, electrophoretic mobility shift assay (EMSA), simulation docking and surface plasmon resonance (SPR). Further, we showed that eltrombopag inhibited in vitro cell proliferation of multiple cancer cell lines and macrophages, and the in vivo anti-tumor activity was also demonstrated in a 4T1 tumor-bearing mouse model. The in vivo data showed that eltrombopag was efficient in reducing microvessels in tumor tissues. We then confirmed the HuR-dependent anti-angiogenesis effect of eltrombopag in 4T1 cells and RAW264.7 macrophages with qRT-PCR, HuR-overexpression and HuR-silencing assays, RNA stability assays, RNA immunoprecipitation and luciferase assays. Finally, we analyzed the in vitro anti-angiogenesis effect of eltrombopag on human umbilical vein endothelial cells (HUVECs) mediated by macrophages with cell scratch assay and in vitro Matrigel angiogenesis assay. With these data, we revealed the HuR-dependent anti-angiogenesis effect of eltrombopag in breast tumor, suggesting that the existing drug eltrombopag may be used as an anti-cancer drug.  相似文献   

20.
Asthma is a chronic inflammatory disease that represents high hospitalizations and deaths in world. Copaiba oil (CO) is popularly used for relieving asthma symptoms and has already been shown to be effective in many inflammation models. This study aimed to investigate the immunomodulatory relationship of CO in ovalbumin (OVA)-induced allergic asthma. The composition of CO sample analyzed by GC and GC–MS and the toxicity test was performed in mice at doses of 50 or 100 mg/kg (by gavage). After, the experimental model of allergic asthma was induced with OVA and mice were orally treated with CO in two pre-established doses. The inflammatory infiltrate was evaluated in bronchoalveolar lavage fluid (BALF), while cytokines (IL-4, IL-5, IL-17, IFN-γ, TNF-α), IgE antibody and nitric oxide (NO) production was evaluated in BALF and lung homogenate (LH) of mice, together with the histology and histomorphometry of the lung tissue. CO significantly attenuated the number of inflammatory cells in BALF, suppressing NO production and reducing the response mediated by TH2 and TH17 (T helper) cells in both BALF and LH. Histopathological and histomorphometric analysis confirmed that CO significantly reduced the numbers of inflammatory infiltrate in the lung tissue, including in the parenchyma area. Our results indicate that CO has an effective in vivo antiasthmatic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号