首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study proposes an indirect adaptive self-organizing RBF neural control (IASRNC) system which is composed of a feedback controller, a neural identifier and a smooth compensator. The neural identifier which contains a self-organizing RBF (SORBF) network with structure and parameter learning is designed to online estimate a system dynamics using the gradient descent method. The SORBF network can add new hidden neurons and prune insignificant hidden neurons online. The smooth compensator is designed to dispel the effect of minimum approximation error introduced by the neural identifier in the Lyapunov stability theorem. In general, how to determine the learning rate of parameter adaptation laws usually requires some trial-and-error tuning procedures. This paper proposes a dynamical learning rate approach based on a discrete-type Lyapunov function to speed up the convergence of tracking error. Finally, the proposed IASRNC system is applied to control two chaotic systems. Simulation results verify that the proposed IASRNC scheme can achieve a favorable tracking performance.  相似文献   

2.
The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.  相似文献   

3.
In this paper, an intelligent position tracking control (IPTC) is developed for a linear ceramic motor (LCM) drive system. The IPTC system is comprised of a neural controller and a robust controller. The neural controller utilizes a self-constructing recurrent neural network (SCRNN) to mimic an ideal computation controller, and the robust controller is designed to achieve L2 tracking performance with a desired attenuation level. If the approximation performance of SCRNN is insufficient, SCRNN can create new hidden neurons to increase the learning ability. If the hidden neuron of SCRNN is insignificant, it should be removed to reduce the computation load; otherwise, if the hidden neuron of SCRNN is significant, it should be retained. Moreover, the adaptive laws of controller parameters are derived in the sense of Lyapunov, so system stability can be guaranteed. Finally, the experimental results of the LCM drive system show a perfect tracking response can be achieved using the self-constructing mechanism and the on-line learning algorithm.  相似文献   

4.
Robust neural network control system design for linear ultrasonic motor   总被引:2,自引:1,他引:1  
Linear ultrasonic motor (LUSM) has much merit, such as high precision, fast control dynamics and large driving force, etc.; however, the dynamic characteristic of LUSM is nonlinear and the precise dynamic model of LUSM is difficult to obtain. To tackle this problem, this study presents a robust neural network control (RNNC) system for LUSM to track a reference trajectory with L 2 robust tracking performance. The developed RNNC system is composed of a neural network controller and a robust controller. The neural network controller is the principal controller used to mimic an ideal controller and the robust controller is adopted to achieve L 2 robust tracking performance. The developed RNNC system is then applied to control an LUSM. Experimental results show that the developed RNNC system can achieve favorable tracking performance with unknown of LUSM model.  相似文献   

5.
In the adaptive neural control design, since the number of hidden neurons is finite for real‐time applications, the approximation errors introduced by the neural network cannot be inevitable. To ensure the stability of the adaptive neural control system, a switching compensator is designed to dispel the approximation error. However, it will lead to substantial chattering in the control effort. In this paper, an adaptive dynamic sliding‐mode neural control (ADSNC) system composed of a neural controller and a fuzzy compensator is proposed to tackle this problem. The neural controller, using a radial basis function neural network, is the main controller and the fuzzy compensator is designed to eliminate the approximation error introduced by the neural controller. Moreover, a proportional‐integral‐type adaptation learning algorithm is developed based on the Lyapunov function; thus not only the system stability can be guaranteed but also the convergence of the tracking error and controller parameters can speed up. Finally, the proposed ADSNC system is implemented based on a field programmable gate array chip for low‐cost and high‐performance industrial applications and is applied to control a brushless DC (BLDC) motor to show its effectiveness. The experimental results demonstrate the proposed ADSNC scheme can achieve favorable control performance without encountering chattering phenomena. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
This paper proposes an intelligent complementary sliding-mode control (ICSMC) system which is composed of a computed controller and a robust controller. The computed controller includes a neural dynamics estimator and the robust compensator is designed to prove a finite L2-gain property. The neural dynamics estimator uses a recurrent neural fuzzy inference network (RNFIN) to approximate the unknown system term in the sense of the Lyapunov function. In traditional neural network learning process, an over-trained neural network would force the parameters to drift and the system may become unstable eventually. To resolve this problem, a dead-zone parameter modification is proposed for the parameter tuning process to stop when tracking performance index is smaller than performance threshold. To investigate the capabilities of the proposed ICSMC approach, the ICSMC system is applied to a one-link robotic manipulator and a DC motor driver. The simulation and experimental results show that favorable control performance can be achieved in the sense of the L2-gain robust control approach by the proposed ICSMC scheme.  相似文献   

7.
Recurrent wavelet neural network (RWNN) has the advantages in its dynamic responses and information storing ability. This paper develops a recurrent wavelet neural backstepping control (RWNBC) scheme for multiple-input multiple-output (MIMO) mechanical systems. This proposed RWNBC comprises a neural controller and a smooth compensator. The neural controller using an RWNN is the principal tracking controller utilized to mimic an ideal backstepping control law; and the parameters of RWNN are online tuned by the derived adaptation laws from the Lyapunov stability theorem. The smooth compensator is designed to dispel the approximation error introduced by the neural controller, so that the asymptotic stability of the closed-loop system can be guaranteed. Finally, two MIMO mechanical systems, a mass-spring-damper system and a two-inverted pendulum system, are performed to verify the effectiveness of the proposed RWNBC scheme. From the simulation results, it is verified that the proposed RWNBC scheme can achieve favorable tracking performance without any chattering phenomenon.  相似文献   

8.
基于确定学习的机器人任务空间自适应神经网络控制   总被引:3,自引:0,他引:3  
吴玉香  王聪 《自动化学报》2013,39(6):806-815
针对产生回归轨迹的连续非线性动态系统, 确定学习可实现未知闭环系统动态的局部准确逼近. 基于确定学习理论, 本文使用径向基函数(Radial basis function, RBF)神经网络为机器人任务空间跟踪控制设计了一种新的自适应神经网络控制算法, 不仅实现了闭环系统所有信号的最终一致有界, 而且在稳定的控制过程中, 沿着回归跟踪轨迹实现了部分神经网络权值收敛到最优值以及未知闭环系统动态的局部准确逼近. 学过的知识以时不变且空间分布的方式表达、以常值神经网络权值的方式存储, 可以用来改进系统的控制性能, 也可以应用到后续相同或相似的控制任务中, 节约时间和能量. 最后, 用仿真说明了所设计控制算法的正确性和有效性.  相似文献   

9.

A TSK-type Hermite neural network (THNN) is studied in this paper. Since the output weights of the THNN use a functional-type form, it provides powerful representation, high learning performance and good generalization capability. Then, a Hermite-neural-network-based adaptive control (HNNAC) system which is composed of a neural controller and a robust compensator is proposed. The neural controller utilizes a THNN to online approximate an ideal controller, and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability. Moreover, a proportional-integral (PI)-type learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed HNNAC system is applied to synchronize a coupled nonlinear chaotic system. In the simulation study, it shows that the proposed HNNAC system can achieve favorable synchronization performance without requiring a preliminary offline tuning.

  相似文献   

10.
DC–DC converters are the devices which can convert a certain electrical voltage to another level of electrical voltage. They are very popularly used because of the high efficiency and small size. This paper proposes an intelligent power controller for the DC–DC converters via cerebella model articulation controller (CMAC) neural network approach. The proposed intelligent power controller is composed of a CMAC neural controller and a robust controller. The CMAC neural controller uses a CMAC neural network to online mimic an ideal controller, and the robust controller is designed to achieve L 2 tracking performance with desired attenuation level. Finally, a comparison among a PI control, adaptive neural control and the proposed intelligent power control is made. The experimental results are provided to demonstrate the proposed intelligent power controller can cope with the input voltage and load resistance variations to ensure the stability while providing fast transient response and simple computation.  相似文献   

11.
In this paper, a fuzzy-identification-based adaptive backstepping control (FABC) scheme is proposed. The FABC system is composed of a backstepping controller and a robust controller. The backstepping controller, which uses a self-organizing fuzzy system (SFS) with the structure and parameter learning phases to on-line estimate the controlled system dynamics, is the principal controller, and the robust controller is designed to dispel the effect of approximation error introduced by the SFS. The developed SFS automatically generates and prunes the fuzzy rules by the proposed structure adaptation algorithm and the parameters of the fuzzy rules and membership functions tunes on-line in the Lyapunov sense. Thus, the overall closed-loop FABC system can guarantee that the tracking error and parameter estimation error are uniformly ultimately bounded; and the tracking error converges to a desired small neighborhood around zero. Finally, the proposed FABC system is applied to a chaotic dynamic system to show its effectiveness. The simulation results verify that the proposed FABC system can achieve favorable tracking performance even with unknown controlled system dynamics.  相似文献   

12.
This paper presents an adaptive PI Hermite neural control (APIHNC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The proposed APIHNC system is composed of a neural controller and a robust compensator. The neural controller uses a three-layer Hermite neural network (HNN) to online mimic an ideal controller and the robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Moreover, a proportional–integral learning algorithm is derived to speed up the convergence of the tracking error. Finally, the proposed APIHNC system is applied to an inverted double pendulums and a two-link robotic manipulator. Simulation results verify that the proposed APIHNC system can achieve high-precision tracking performance. It should be emphasized that the proposed APIHNC system is clearly and easily used for real-time applications.  相似文献   

13.
In this paper, a novel robust training algorithm of multi-input multi-output recurrent neural network and its application in the fault tolerant control of a robotic system are investigated. The proposed scheme optimizes the gradient type training on basis of three new adaptive parameters, namely, dead-zone learning rate, hybrid learning rate, and normalization factor. The adaptive dead-zone learning rate is employed to improve the steady state response. The normalization factor is used to maximize the gradient depth in the training, so as to improve the transient response. The hybrid learning rate switches the training between the back-propagation and the real-time recurrent learning mode, such that the training is robust stable. The weight convergence and L 2 stability of the algorithm are proved via Lyapunov function and the Cluett’s law, respectively. Based upon the theoretical results, we carry out simulation studies of a two-link robot arm position tracking control system. A computed torque controller is designed to provide a specified closed-loop performance in a fault-free condition, and then the RNN compensator and the robust training algorithm are employed to recover the performance in case that fault occurs. Comparisons are given to demonstrate the advantages of the control method and the proposed training algorithm.  相似文献   

14.
This paper presents a novel quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems via H approach. In the proposed algorithm, a self-constructing neural fuzzy network (SCNFN) is developed with both structure and parameter learning phases, so that the number of fuzzy rules and network parameters can be adaptively determined. Based on the SCNFN, an uncertainty observer is first introduced to watch compound system uncertainties. Subsequently, an optimal NFN-based controller is designed to overcome the effects of unstructured uncertainty and approximation error by integrating the NFN identifier, linear optimal control and H approach as a whole. The adaptive tuning laws of network parameters are derived in the sense of quadratic stability technique and Lyapunov synthesis approach to ensure the network convergence and H synchronization performance. The merits of the proposed control scheme are not only that the conservative estimation of NFN approximation error bound is avoided but also that a suitable-sized neural structure is found to sufficiently approximate the system uncertainties. Simulation results are provided to verify the effectiveness and robustness of the proposed control method.  相似文献   

15.
In this study, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive output recurrent cerebellar model articulation controller (AORCMAC) and H control technique is proposed for wheeled inverted pendulums (WIPs) with unknown system dynamics and external disturbance. The AORCMAC is a nonlinear adaptive system with simple computation, good generalization capability and fast learning property. Therefore, the WIP can stand upright when it moves to a designed position stably. In the proposed control system, an AORCMAC is used to copy an ideal backstepping control, and a robust H controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. Moreover, the all adaptation laws of the RIBTC system are derived based on the Lyapunov stability analysis, the Taylor linearization technique and H control theory, so that the stability of the closed-loop system and H tracking performance can be guaranteed. The proposed control scheme is practical and efficacious for WIPs by simulation results.  相似文献   

16.
In this paper, a recurrent neural network (RNN) control scheme is proposed for a biped robot trajectory tracking system. An adaptive online training algorithm is optimized to improve the transient response of the network via so-called conic sector theorem. Furthermore, L 2-stability of weight estimation error of RNN is guaranteed such that the robustness of the controller is ensured in the presence of uncertainties. In consideration of practical applications, the algorithm is developed in the discrete-time domain. Simulations for a seven-link robot model are presented to justify the advantage of the proposed approach. We give comparisons between the standard PD control and the proposed RNN compensation method.  相似文献   

17.
In the conventional CMAC-based adaptive controller design, a switching compensator is designed to guarantee system stability in the Lyapunov stability sense but the undesirable chattering phenomenon occurs. This paper proposes a CMAC-based smooth adaptive neural control (CSANC) system that is composed of a neural controller and a saturation compensator. The neural controller uses a CMAC neural network to online mimic an ideal controller and the saturation compensator is designed to dispel the approximation error between the ideal controller and neural controller without any chattering phenomena. The parameter adaptive algorithms of the CSANC system are derived in the sense of Lyapunov stability, so the system stability can be guaranteed. Finally, the proposed CSANC system is applied to a Chua’s chaotic circuit and a DC motor driver. Simulation and experimental results show the CSANC system can achieve a favorable tracking performance. It should be emphasized that the development of the proposed CSANC system doesn’t need the knowledge of the system dynamics.  相似文献   

18.
In this paper, an intelligent transportation control system (ITCS) using wavelet neural network (WNN) and proportional-integral-derivative-type (PID-type) learning algorithms is developed to increase the safety and efficiency in transportation process. The proposed control system is composed of a neural controller and an auxiliary compensation controller. The neural controller acts as the main tracking controller, which is designed via a WNN to mimic the merits of an ideal total sliding-mode control (TSMC) law. The PID-type learning algorithms are derived from the Lyapunov stability theorem, which are utilized to adjust the parameters of WNN on-line for further assuring system stability and obtaining a fast convergence. Moreover, based on H control technique, the auxiliary compensation controller is developed to attenuate the effect of the approximation error between WNN and ideal TSMC law, so that the desired attenuation level can be achieved. Finally, to investigate the effectiveness of the proposed control strategy, it is applied to control a marine transportation system and a land transportation system. The simulation results demonstrate that the proposed WNN-based ITCS with PID-type learning algorithms can achieve favorable control performance than other control methods.  相似文献   

19.
针对一类不确定系统的跟踪控制,设计了一种将GBF-CMAC(cerebellar model articulation controller with Gauss basis function)与滑模控制相结合的控制系统。利用符号距离和分层结构减少了神经网络所需存储器的数量,并提出了一种神经网络参数的自适应学习律。将设计的控制器用于含有不确定性和欠驱动结构的高阶柔性直线结构系统的跟踪控制,并与一般滑模控制和积分滑模控制进行了比较。实验结果表明,所设计的控制器不仅具有较好的鲁棒性,而且改善了滑模控制存在的抖振问题。同时通过调整神经网络的参数对抖振进行控制,实现了抖振和跟踪性能之间的最优选择。  相似文献   

20.
This paper presents a novel switching controller incorporated with backlash and friction compensations, which is utilized to achieve speed synchronization among multi‐motor and load position tracking. The proposed controller consists of two parts: synchronization and tracking control in contact mode and robust control in backlash mode, where a function characterizing whether backlash occurs is used for switching between two modes. Using the proposed switching controller, several control objectives are achieved. Firstly, the coupling problem of speed synchronization and load tracking in contact mode is addressed by introducing a switching plane. Secondly, based on the switching plane, an improved prescribed performance function is introduced to attain load tracking with prescribed performances, and L performance of speed synchronization is guaranteed by initialization method, maintaining the transient performance of synchronization behavior. Thirdly, the lumped uncertain nonlinearity including friction and other uncertain functions is compensated by Chebyshev neural network in contact mode. Furthermore, a robust control is adopted in backlash mode to make system traverse backlash at an exponential rate and simultaneously eliminate low‐speed crawling phenomenon of LuGre friction. Finally, comparative simulations on four‐motor driving servo system are provided to verify the effectiveness and reliability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号