首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
The genome of Streptococcus pyogenes, an important human pathogen, encodes homologs of the principal bacterial heat shock proteins DnaK and GroES, -EL, as well as HrcA, a negative regulator of dnaK and groESL expression in other Gram-positive bacteria. Using nuclease protection assays to measure dnaK/groESL mRNA abundance and a "non-polar" insertion to disrupt hrcA, we demonstrate that heat shock triggers a 4- to 8-fold increase in dnaK and groESL-specific mRNAs within 5 min of the temperature shift and that HrcA is a negative regulator of S. pyogenes dnaK/groESL mRNA abundance in unstressed S. pyogenes. Although the loss of HrcA elevated dnaK and groESL mRNA levels under non-heat shock conditions, the relative abundance of these RNAs increased further in heat shocked S. pyogenes, suggesting an additional element contributing to their synthesis or stability.  相似文献   

4.
5.
6.
7.
The heat shock response of the groESL operon of Agrobacterium tumefaciens was studied at the RNA level. The operon was found to be activated under heat shock conditions and transcribed as a polycistronic mRNA that contains the groES and groEL genes. After activation, the polycistronic mRNA appeared to be cleaved between the groES and groEL genes and formed two monocistronic mRNAs. The groES cleavage product appeared to be unstable and subjected to degradation, while the groEL cleavage product appeared to be stable and became the major mRNA representing the groESL operon after long periods of growth at a high temperature. The polycistronic mRNA containing the groES and groEL genes was the major mRNA representing the groESL operon at a low temperature, and it reappeared when the cells were returned to the lower growth temperature after heat shock induction. These findings indicate that the cleavage event is part of the heat shock regulation of the groESL operon in A. tumefaciens.  相似文献   

8.
9.
10.
11.
12.
Two genes bearing similarity to alternative sigma factors were identified in the Deinococcus radiodurans genome sequence and designated sig1 and sig2. These genes were cloned and inactivated, and both were found to be important for survival during heat and ethanol stress, although the sig1 mutants displayed a more severe phenotype than the sig2 mutants. Reporter gene fusions to the groESL and dnaKJ operons transformed into these mutant backgrounds indicated that sig1 is required for the heat shock induction of groESL and dnaKJ, whereas sig2 mutants show a more moderate defect in dnaKJ induction and are not impaired for groESL induction. Essentiality tests suggested that neither sig1 nor sig2 is essential under all conditions. Sequence comparisons demonstrated that the sig1 gene product is classed distinctly with extracytoplasmic function (ECF) sigma factors, whereas Sig2 appears to be a more divergent sigma factor ortholog. These results suggest that sig1 encodes the major ECF-derived heat shock sigma factor in D. radiodurans and that it plays a central role in the positive regulation of heat shock genes. sig2, in contrast, appears to play a more minor role in heat shock protection and may serve to modulate the expression of some heat protective genes.  相似文献   

13.
14.
A chicken genomic library was screened to obtain genomic clones for ubiquitin genes. Two genes that differ in their genomic location and organization were identified. One gene, designated Ub I, contains four copies of the protein-coding sequence arranged in tandem, while the second gene, Ub II, contains three. The origin of the two major mRNAs that are induced after heat shock in chicken embryo fibroblasts was determined by generating DNA probes from the 5'-and 3'-noncoding regions of the two genes. Both mRNAs are transcribed from Ub I, the larger being the unspliced precursor of the smaller. A 674-base-pair intron was located within the 5'-noncoding region of Ub I. The second gene, Ub II, does not appear to code for an RNA species in normal or heat-shocked chicken embryo fibroblasts. The expression of ubiquitin mRNA during heat shock and recovery was examined. Addition of actinomycin D before heat shock completely abolished the response of ubiquitin mRNA to the stress. Analysis of the stability of the mRNA during recovery revealed that the mRNA accumulated during the heat shock is rapidly degraded with a half-life of approximately 1.5 h, suggesting a specialized but transient role for ubiquitin during heat shock.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号