首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Device-to-Device (D2D) communication is a promising technology that can reduce the burden on cellular networks while increasing network capacity. In this paper, we focus on the channel resource allocation and power control to improve the system resource utilization and network throughput. Firstly, we treat each D2D pair as an independent agent. Each agent makes decisions based on the local channel states information observed by itself. The multi-agent Reinforcement Learning (RL) algorithm is proposed for our multi-user system. We assume that the D2D pair do not possess any information on the availability and quality of the resource block to be selected, so the problem is modeled as a stochastic non-cooperative game. Hence, each agent becomes a player and they make decisions together to achieve global optimization. Thereby, the multi-agent Q-learning algorithm based on game theory is established. Secondly, in order to accelerate the convergence rate of multi-agent Q-learning, we consider a power allocation strategy based on Fuzzy Cmeans (FCM) algorithm. The strategy firstly groups the D2D users by FCM, and treats each group as an agent, and then performs multi-agent Q-learning algorithm to determine the power for each group of D2D users. The simulation results show that the Q-learning algorithm based on multi-agent can improve the throughput of the system. In particular, FCM can greatly speed up the convergence of the multi-agent Q-learning algorithm while improving system throughput.  相似文献   

2.
With the emergence of 5G mobile multimedia services, end users’ demand for high-speed, low-latency mobile communication network access is increasing. Among them, the device-to-device (D2D) communication is one of the considerable technology. In D2D communication, the data does not need to be relayed and forwarded by the base station, but under the control of the base station, a direct local link is allowed between two adjacent mobile devices. This flexible communication mode reduces the processing bottlenecks and coverage blind spots of the base station, and can be widely used in dense user communication scenarios such as heterogeneous ultra-dense wireless networks. One of the important factors which affects the quality-of-service (QoS) of D2D communications is co-channel interference. In order to solve this problem of co-channel interference, this paper proposes a graph coloring based algorithm. The main idea is to utilize the weighted priority of spectrum resources and enables multiple D2D users to reuse the single cellular user resource. The proposed algorithm also provides simpler power control. The heterogeneous pattern of interference is determined using different types of interferences and UE and the priority of color is acquired. Simulation results show that the proposed algorithm effectively reduced the co-channel interference, power consumption and improved the system throughput as compared with existing algorithms.  相似文献   

3.
With the rapid development of Internet technology, users have an increasing demand for data. The continuous popularization of traffic-intensive applications such as high-definition video, 3D visualization, and cloud computing has promoted the rapid evolution of the communications industry. In order to cope with the huge traffic demand of today’s users, 5G networks must be fast, flexible, reliable and sustainable. Based on these research backgrounds, the academic community has proposed D2D communication. The main feature of D2D communication is that it enables direct communication between devices, thereby effectively improve resource utilization and reduce the dependence on base stations, so it can effectively improve the throughput of multimedia data. One of the most considerable factor which affects the performance of D2D communication is the co-channel interference which results due to the multiplexing of multiple D2D user using the same channel resource of the cellular user. To solve this problem, this paper proposes a joint algorithm time scheduling and power control. The main idea is to effectively maximize the number of allocated resources in each scheduling period with satisfied quality of service requirements. The constraint problem is decomposed into time scheduling and power control subproblems. The power control subproblem has the characteristics of mixed-integer linear programming of NP-hard. Therefore, we proposed a gradual power control method. The time scheduling subproblem belongs to the NP-hard problem having convex-cordinality, therefore, we proposed a heuristic scheme to optimize resource allocation. Simulation results show that the proposed algorithm effectively improved the resource allocation and overcome the co-channel interference as compared with existing algorithms.  相似文献   

4.
研究了受控无线网络的动态资源分配。针对传统无线通信传输模型的局限性随着无线通信系统架构的发展日益凸显的问题,提出了一种引入反馈控制策略的受控无线网络模型。该模型结合部分可观察马尔可夫决策过程(POMDP),将用户接收功率与数据传输误码率作为反馈观测对象,对通信小区内基站天线开启数与用户接入数进行动态资源最优匹配。仿真结果表明,这种方法能够有效提升系统传输能效性与可靠性,降低传输误码率,改善系统资源动态匹配控制性能。  相似文献   

5.
Spectrum resources are the precious and limited natural resources. In order to improve the utilization of spectrum resources and maximize the network throughput, this paper studies the resource allocation of the downlink cognitive radio network with non-orthogonal multiple access (CRN-NOMA). NOMA, as the key technology of the fifth-generation communication (5G), can effectively increase the capacity of 5G networks. The optimization problem proposed in this paper aims to maximize the number of secondary users (SUs) accessing the system and the total throughput in the CRN-NOMA. Under the constraints of total power, minimum rate, interference and SINR, CRN-NOMA throughput is maximized by allocating optimal transmission power. First, for the situation of multiple sub-users, an adaptive optimization method is proposed to reduce the complexity of the optimization solution. Secondly, for the optimization problem of nonlinear programming, a maximization throughput optimization algorithm based on Chebyshev and convex (MTCC) for CRN-NOMA is proposed, which converts multi-objective optimization problem into single-objective optimization problem to solve. At the same time, the convergence and time complexity of the algorithm are verified. Theoretical analysis and simulation results show that the algorithm can effectively improve the system throughput. In terms of interference and throughput, the performance of the sub-optimal solution is better than that of orthogonal-frequency-division-multiple-access (OFDMA). This paper provides important insights for the research and application of NOMA in future communications.  相似文献   

6.
Conventional approach of dealing with more users per coverage area in cellular networks implies densifying the amount of (Access Point) AP which will eventually result in a larger carbon footprint. In this paper, we propose a base station off-loading and cell range extension (CRE) scheme based on multi-hop device-to-device (MHD2D) path selection between transmitter and receiver node. The paper also provides derivations of upper and lower bounds for energy efficiency, capacity, and transmit power. The proposed path selection scheme is inspired by the foraging behavior of honey bees. We present the algorithm as a modified variant of the artificial bee colony algorithm (MVABC). The proposed optimization problem is modeled as a minimization problem where we optimize the Energy Efficiency (EE). The proposed path selection MVABC is compared with the Genetic Algorithm (GA) and also with classical artificial bee colony (ABC) through simulations and statistical analysis. The student’s t-test, p-value, and standard error of means (SEM) clearly show that MVABC based path selection out-performs the GA and classical ABC schemes. MVABC based approach is 66% more efficient when compared with classic ABC and about 62% efficient when compared with GA based scheme.  相似文献   

7.
宽带CDMA无线多媒体接入系统的研究   总被引:2,自引:0,他引:2  
邱玲  朱近康 《高技术通讯》2000,10(12):25-28
提出了可变传输速率的宽带CDMA扩频调制方法、非平衡功率控制算法以及自适应接入速率的无线接入方法。基于上述技术,给出了由基站和多媒体终端组成的实验系统参数。该系统实现了舆速率分别为8kbp和144skbps的语音和数据通信。  相似文献   

8.
研究了干扰链路流量大小对IEEE802.16Mesh网络传输性能的影响,提出了一种通过计算用户站(SS)和基站(BS)的通信路径干扰的总流量来寻找总干扰流量最小的路由算法,并结合路由树给出了一种冲突避免调度的方法。该算法既考虑了干扰链路的数量,又考虑了干扰链路的实际通信强度,在建立路由树的过程中能够更快地使系统达到更佳的负载均衡状态,最大强度地避免调度中可能出现的带宽冲突。由于干扰流量的影响可以得到有效的控制,系统的吞吐量可以明显提高。仿真结果验证了该算法的有效性。  相似文献   

9.
Multicast has been known as an efficient transmission technique for group-oriented applications such as multi-party video conferencing, video streaming for paid users, online gaming, and social networking. In this paper, we investigate physical-layer multicasting in mobile cellular downlink systems, where the antennas at base station are employed to transmit common signals to multiple users simultaneously. A central design problem of downlink physical-layer multicasting is the search for the optimal beamforming vector that maximizes the multicast rate. Traditionally, the problem has been formulated as a quadratically constrained quadratic programming problem and shown to be NP-hard in general. In this paper, starting from examining the Karush–Kuhn–Tucker stationary conditions, a new method based on two-user approximation is proposed for the search for the optimal beamforming vector. The method is able to achieve a much higher multicast rate than the existing methods and provides an attractive trade-off between performance and complexity, especially for the case of using a large number of antennas. Using a large number of antennas at base station, also known as the large-scale multiple-input and multiple-output technique, has been regarded widely as one of the most promising technologies to increase system capacity, coverage, and user throughput for future generations of mobile cellular systems.  相似文献   

10.
The number of mobile devices accessing wireless networks is skyrocketing due to the rapid advancement of sensors and wireless communication technology. In the upcoming years, it is anticipated that mobile data traffic would rise even more. The development of a new cellular network paradigm is being driven by the Internet of Things, smart homes, and more sophisticated applications with greater data rates and latency requirements. Resources are being used up quickly due to the steady growth of smartphone devices and multimedia apps. Computation offloading to either several distant clouds or close mobile devices has consistently improved the performance of mobile devices. The computation latency can also be decreased by offloading computing duties to edge servers with a specific level of computing power. Device-to-device (D2D) collaboration can assist in processing small-scale activities that are time-sensitive in order to further reduce task delays. The task offloading performance is drastically reduced due to the variation of different performance capabilities of edge nodes. Therefore, this paper addressed this problem and proposed a new method for D2D communication. In this method, the time delay is reduced by enabling the edge nodes to exchange data samples. Simulation results show that the proposed algorithm has better performance than traditional algorithm.  相似文献   

11.
Full-duplex (FD) has been recognized as a promising technology for future 5G networks to improve the spectrum efficiency. However, the biggest practical impediments of realizing full-duplex communications are the presence of self-interference, especially in complex cellular networks. With the current development of self-interference cancellation techniques, full-duplex has been considered to be more suitable for device-to-device (D2D) and small cell communications which have small transmission range and low transmit power. In this paper, we consider the full-duplex D2D communications in multi-tier wireless networks and present an analytical model which jointly considers mode selection, resource allocation, and power control. Specifically, we consider a distance based mode selection scheme. The performance analysis of different D2D communications modes are performed based on stochastic geometry, and tractable analytical solutions are obtained. Then we investigate the optimal resource partitions between dedicated D2D mode and cellular mode. Numerical results validate the theoretical anlaysis and indicate that with appropriate proportions of users operated in different transmission modes and optimal partitioning of spectrum, the performance gain of FD-D2D communication can be achieved.  相似文献   

12.
In this paper, we propose a two-tiered segment-based Device-to-Device (S-D2D) caching approach to decrease the startup and playback delay experienced by Video-on-Demand (VoD) users in a cellular network. In the S-D2D caching approach cache space of each mobile device is divided into two cache-blocks. The first cache-block reserve for caching and delivering the beginning portion of the most popular video files and the second cache-block caches the latter portion of the requested video files ‘fully or partially’ depending on the users’ video watching behaviour and popularity of videos. In this approach before caching, video is divided and grouped in a sequence of fixed-sized fragments called segments. To control the admission to both cache-blocks and improve the system throughput, we further propose and evaluate three cache admission control algorithms. We also propose a video segment access protocol to elaborate on how to cache and share the video segments in a segmentation based D2D caching architecture. We formulate an optimisation problem and find the optimal cache probability and beginning-segment size that maximise the cache-throughput probability of beginning-segments. To solve the non-convex cache-throughout maximisation problem, we derive an iterative algorithm, where the optimal solution is derived in each step. We used extensive simulations to evaluate the performance of our proposed S-D2D caching system.  相似文献   

13.
Acquiring good throughput and diminishing interference to primary users (PU) are the main objectives for secondary users in a cognitive radio (CR) network. This paper proposes a centralized subcarrier and power allocation scheme for underlay multi-user orthogonal frequency division multiplexing considering the rate loss and the interference those the PU can tolerate. The main purpose of the proposed scheme is to efficiently distribute the available subcarriers among cognitive users to enhance both the fairness and the throughput performance of the cognitive network while maintaining the QoS of primary users. Simulation results show that the proposed scheme achieves a significantly higher CR network throughput than that of the conventional interference power constraint (IPC) based schemes and provides a significantly enhanced fairness performance. Also, contrary to the conventional IPC based schemes, the proposed scheme is able to significantly increase the achieved throughput as the number of CR users increases.  相似文献   

14.
Non-orthogonal multiple access (NOMA) is one of the key 5G technology which can improve spectrum efficiency and increase the number of user connections by utilizing the resources in a non-orthogonal manner. NOMA allows multiple terminals to share the same resource unit at the same time. The receiver usually needs to configure successive interference cancellation (SIC). The receiver eliminates co-channel interference (CCI) between users and it can significantly improve the system throughput. In order to meet the demands of users and improve fairness among them, this paper proposes a new power allocation scheme. The objective is to maximize user fairness by deploying the least fairness in multiplexed users. However, the objective function obtained is non-convex which is converted into convex form by utilizing the optimal Karush-Kuhn-Tucker (KKT) constraints. Simulation results show that the proposed power allocation scheme gives better performance than the existing schemes which indicates the effectiveness of the proposed scheme.  相似文献   

15.
In this paper, we consider a three-hop relay system based on interference cancellation technique in Underlay cognitive radio (CR) network. Although underlay CR has been shown as a promising technique to better utilize the source of primary users (PUs), its secondary performance will be severely degraded. On one hand, by adapting the Underlay spectrum sharing pattern, secondary users (SUs) would observe the strict power constraints and be interfered by primary users. On the other hand, limited transmit power results in limited transmission range, which greatly degrade the secondary transmission capacity. To solve the problems above, we propose an interference cancellation protocol for multi-hop wireless communication networks in underlay CR, which could develop the long-distance transmission performance and improve the transmission efficiency significantly. As simulation results shows, proposed scheme significantly reduce the secondary outage probability and increase the secondary diversity than the traditional cases.  相似文献   

16.
A code design algorithm for application in multi-dimensional optical code division multiple access (MD-OCDMA) for asynchronous optical fibre communication is proposed. Two-dimensional (2D) wavelength-time or space-time OCDMA and three-dimensional (3D) space-wavelength-time OCDMA are subsets of MD-OCDMA. Some applications and the performance analysis of the algorithm in 2D multipulse per row codes and 3D multipulse per plane codes are shown. In the applications discussed, this design ensures a maximum cross-correlation of '1' between any two codes. The performance metrics studied are the probability of error due to multiple-access interference for different numbers of active users and optimum temporal length for different values of cardinality. The performance analysis shows that the proposed 2D design offers very low probability of error due to multiple-access interference at lower cardinality when compared with other 2D designs using equivalent code dimension. A comparison of the proposed 3D design with an existing 3D design shows better performance at lower cardinality. The 3D designs show better performance when compared with the 2D designs.  相似文献   

17.
邱晶  冯文江 《高技术通讯》2008,18(2):137-141
针对WCDMA系统软切换的位置选择分集发射(SSDT)方式,提出了一种自适应导频功率调整和主小区选择算法。采用这种算法,各基站能够根据各自小区负载和覆盖情况动态调整其导频功率,进行相邻小区间的负载均衡,另外,以系统效用最大化为目标,为每个用户选择最佳主小区。仿真结果表明,该算法能以可接受的计算复杂度换取系统性能的提高。  相似文献   

18.
The demand for mobile uplink traffic has increased significantly in the past few decades with the development of the Internet of Things (IoT) and mobile Internet. This has subsequently imposed challenges on 5G networks to provide high spectral efficiency and low-power massive connectivity. Non-orthogonal multiple access (NOMA) is a viable alternative to the current state-of-the-art orthogonal multiple access (OMA) techniques to address the challenges in 5G systems. In addition, a power control (PC) mechanism to mitigate the effect of interference between users can be accommodated to improve network performance. In this paper, we discuss the basic principles, key features, and strengths/weaknesses of the various power domain NOMA schemes. Moreover, we propose an uplink PC scheme for the users of a power domain NOMA network. The proposed PC method makes use of the evolutionary game theory (EGT) model to adaptively adjust the transmitted power level of the users which helps in mitigating user interference. A successive interference cancellation (SIC) receiver is applied at a base station (BS) in order to separate the users’ signals. By performing simulations, we show that the proposed EGT-based PC scheme achieves higher network efficiency, spectral efficiency, and energy efficiency.  相似文献   

19.
The communication reliability and system capacity are two of the key performance indicators for Internet of Vehicles (IoV). Existing studies have proposed a variety of technologies to improve reliability and other performance, such as channel selection and power allocation in Vehicle-to-Infrastructure (V2I). However, these researches are mostly applied in a single roadside unit (RSU) scenario without considering inter-cell interference (ICI) of multi-RSUs. In this paper, considering the distribution characteristics of multi-RSUs deployment and corresponding ICI, we propose a reliable uplink transmission scheme to maximize the total capacity and decrease the interference of multi-RSUs (mRSU-DI) in condition of the uplink interruption performance. In the proposed mRSU-DI scheme, ICI is depressed by dynamic channel and power allocation algorithm. A heuristic algorithm based on penalty function is proposed to obtain the optimal power allocation solution of the model. In addition, we realize the scheme in both given conditions of channel state information (CSI) and channel state distribution, respectively. The results show that the proposed scheme can both improve the system capacity and guarantee the reliable transmission in both premises.  相似文献   

20.
As the scale of power networks has expanded, the demand for multi-service transmission has gradually increased. The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networks. However, it still cannot cope with situations such as wireless access point (AP) failure. To solve this problem, this paper combines orthogonal frequency division multiple access (OFDMA) technology and dynamic channel optimization technology to design a fault-tolerant WiFi6 dynamic resource optimization method for achieving high quality wireless services in a wirelessly covered network even when an AP fails. First, under the premise of AP layout with strong coverage over the whole area, a faulty AP determination method based on beacon frames (BF) is designed. Then, the maximum signal-to-interference ratio (SINR) is used as the principle to select AP reconnection for the affected users. Finally, this paper designs a dynamic access selection model (DASM) for service frames of power Internet of Things (IoTs) and a scheduling access optimization model (SAO-MF) based on multi-frame transmission, which enables access optimization for differentiated services. For the above mechanisms, a heuristic resource allocation algorithm is proposed in SAO-MF. Simulation results show that the method can reduce the delay by 15% and improve the throughput by 55%, ensuring high-quality communication in power wireless networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号