首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study has numerically investigated the Moderate or Intense Low oxygen Dilution (MILD) combustion regime, combustion processes and NO formation characteristics of the highly CO-rich syngas counterflow nonpremixed flames. To realistically predict the flame properties of the highly CO-rich syngas, the chemistry is represented by the modified GRI 3.0 mechanism. Computations are performed to precisely analyze the flame structure, NO formation rate, and EINO of each NO sub-mechanism. Numerical results reveal that the hydrogen enrichment and oxygen augmentation substantially influence the NO emission characteristics and the dominant NO production route in the CO-rich syngas nonpremixed flames under MILD and high temperature combustion regimes. It is found that the most dominant NO production routes are the NNH path for the lowest oxygen level (3%) and the thermal mechanism for the highest O2 condition (21%). For the intermediate oxygen level (9%), the most dominant NO production routes are the NNH route for the hydrogen fraction up to 5%, the CO2 path for the hydrogen fraction range from 5% to 10% and the thermal mechanism for the hydrogen fraction higher than 10%, respectively. To evaluate the contribution of the specific reaction on EINO the sensitivity coefficients are precisely analyzed for NO formation processes with the dominance of NNH/CO2/Thermal mechanism under the highly CO-rich syngas flames.  相似文献   

2.
Flame characteristics of swirling non-premixed H2/CO syngas fuel mixtures have been simulated using large eddy simulation and detailed chemistry. The selected combustor configuration is the TECFLAM burner which has been used for extensive experimental investigations for natural gas combustion. The large eddy simulation (LES) solves the governing equations on a structured Cartesian grid using a finite volume method, with turbulence and combustion modelling based on the localised dynamic Smagorinsky model and the steady laminar flamelet model respectively. The predictions for H2-rich and CO-rich flames show considerable differences between them for velocity and scalar fields and this demonstrates the effects of fuel variability on the flame characteristics in swirling environment. In general, the higher diffusivity of hydrogen in H2-rich fuel is largely responsible for forming a much thicker flame with a larger vortex breakdown bubble (VBB) in a swirling flame compare to the H2-lean but CO-rich syngas flames.  相似文献   

3.
The NO formation characteristics and reaction pathways of opposed-jet H2/CO syngas diffusion flames were analyzed with a revised OPPDIF program which coupled a narrowband radiation model with detailed chemical kinetics in this work. The effects of strain rates ranging from 0.1 to 1000 s?1 and diluents including CO2, H2O and N2 on NO production rates were investigated for three typical syngas compositions. The numerical results demonstrated that NO is produced primary through NNH-intermediate route and thermal route at high strain rates, where the reaction of NH + O = NO + H (R51) also become more active. Near the strain rate of 10 s?1, the flame temperature is the highest and thermal route is the dominant NO formation route, but NO would be consumed by reburn route where NO is converted to NH through HNO, especially for H2-rich syngas. At low strain rates, radiative heat loss results in a lower flame temperature and further reduce NO formation, while the reaction of N + CO2 = NO + CO (R140) become more important, especially for CO-rich syngas. With the diluents, NO production rates decreased with increasing dilution percentages. When the flame temperature is very high as the thermal route is dominant near strain rate of 10 s?1, CO2 dilution makes flame temperature and NO production rate the lowest. Toward both lower and higher strain rates, adding H2O is more effective in reducing NO because R140 and NNH-intermediate route are suppressed the most by H2O dilution respectively.  相似文献   

4.
Turbulent nonpremixed H2/N2 and H2/CO syngas flames were simulated using 3D large eddy simulations coupled with a laminar flamelet combustion model. Four different syngas fuel mixtures varying from H2-rich to CO-rich including N2 have been modelled. The computations solved the Large Eddy Simulation governing equations on a structured non-uniform Cartesian grid using the finite volume method, where the Smagorinsky eddy viscosity model with the localised dynamic procedure is used to model the sub-grid scale turbulence. Non-premixed combustion has been incorporated using the steady laminar flamelet model. Both instantaneous and time-averaged quantities are analysed and data were also compared to experimental data for one of the four H2-rich flames. Results show significant differences in both unsteady and steady flame temperature and major combustion products depending on the ratio of H2/N2 and H2/CO in syngas fuel mixture.  相似文献   

5.
The radiation effect on flame temperature and NO emission of H2-lean (0.2H2 + 0.8CO) and H2-rich (0.8H2 + 0.2CO) syngas/air counterflow diffusion flames was numerically investigated using OPPDIF code incorporated with the optical thin model, statistical narrow band model and adiabatic condition. Firstly, the coupled effect of strain rate and radiation was studied. Disparate tendencies of NO emission with an increasing strain rate between H2-lean and H2-rich syngas flames were found at very small strain rate, and the effect of radiation reabsorption on NO formation can be neglected when the strain rate was greater than 100 s?1 for both H2-lean and H2-rich syngas flames. Because the radiation effect is vital to flames with small strain rate, its impact on flame temperature and NO emission was investigated in detail at a strain rate of 10 s?1. The results indicated that NO formation is more sensitive to radiation reabsorption than flame temperature, especially for the H2-rich syngas flame. The underlying mechanism was discovered by using reaction pathway analysis. Furthermore, the radiation effect under CO2 dilution of the syngas fuel was examined. It was demonstrated that the radiation effect on flame temperature became more prominent with the increase of CO2 concentration for both H2-lean and H2-rich syngas. The radiation effect on NO emission increased first and then decreased with an increasing CO2 content for H2-lean syngas, whereas for H2-rich syngas the radiation effect is monotonic.  相似文献   

6.
根据条件矩模型(CMC)和小火焰面模型在模型构建上的相似,针对具有不同大小雷诺数和湍流-化学相互作用特性的非预混湍流射流火焰,对这两种模型进行了数值研究和比较.湍流燃烧模型采用Lagrangian型非稳态小火焰模型(LFM)和径向加权积分的CMC模型,而在H2/N2火焰的数值研究中还考虑了稳态小火焰模型的数值模拟结果....  相似文献   

7.
《能源学会志》2020,93(4):1261-1270
The chemical looping gasification (CLG) of rice husk was conducted in a fixed bed reactor to analyze the effects of the ratio of oxygen carrier to rice husk (O/C), temperature, residence time and preparation methods of Fe-based oxygen carriers. The yield of gas, H2/CO, lower heating value of syngas (LHV), conversion efficiency and performance parameters were analyzed to obtain CLG reaction characterization and optimal reaction conditions. Results showed that when O/C increased from 0.5 to 3.0, the gas production, H2/CO, CO2 yield and carbon conversion efficiency gradually increased, while the yield of H2, CO and CH4 and LHV gradually decreased. At the same time, a highest gasification efficiency was obtained when O/C was 1.5. As increasing temperature, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, while the yield of H2, CH4 and CO2, H2/CO and LHV gradually decreased. Sintering and agglomeration was obvious when the temperature was higher than 850 °C. When the reaction time increased from 10 min to 60 min, the gas production, CO yield, carbon conversion efficiency and gasification efficiency gradually increased, but the yield of H2, H2/CO and LHV decreased, among which 30 min was the best reaction residence time. In addition, coprecipitation was the best preparation method among several preparation methods of oxygen carrier. Finally, O/C of 1.5, 800 °C, 30 min and coprecipitation preparation method of oxygen carrier were the optimal parameters to obtain a gasification efficiency of 26.88%, H2 content of 35.64%, syngas content of 56.40%, H2/CO ratio of 1.72 and LHV of 12.25 MJ/Nm3.  相似文献   

8.
This paper used the opposed-flow flame model and GRI 3.0 mechanism to investigate NO emission characteristics of H2-rich and H2-lean syngas under diffusion and premixed conditions, respectively, and analyzed influences of adding H2O, CO2 and N2 on NO formation from the standpoint of thermodynamics and reaction kinetics. For diffusion flames, thermal route is the dominant pathway to produce NO, and adding N2, H2O and CO2 shows a decreasing manner in lowering NO emission. The phenomenon above is more obvious for H2-rich syngas because it has higher flame temperature. For premixed flames, adding CO2 causes higher NO concentration than adding H2O, because adding CO2 produces more O radical, which promotes formation of NO through NNH + O = NH + NO, NH + O = NO + H and reversed N + NO = N2 + O. And in burnout gas, thermal route is the dominant way for NO formation. Under this paper's conditions, adding N2 increases the formation source of NO as well as decreases the flame temperature, and it reduces the NO formation as a whole. In addition, for H2-lean syngas and H2-rich syngas with CO2 as the diluent, N + CO2 = NO + CO plays as an important role in thermal route of NO formation.  相似文献   

9.
Experimental and numerical investigations were performed to study the combustion characteristics of synthesis gas (syngas) under premixed swirling flame mode. Four different type of syngases, ranging from low to high H2 content were tested and simulated. The global flame structures and post emission results were obtained from experimental work, providing the basis of validation for simulations using flamelet generated manifold (FGM) modelling approach via a commercial computational fluid dynamic software. The FGM method was shown to provide reasonable agreement with experimental result, in particular the post-exhaust emissions and global flame shapes. Subsequently, the FGM method was adopted to model the flame structure and predict the radical species in the reaction zones. Simulation result shows that H2-enriched syngas has lower peak flame temperature with lesser NO species formed in the reaction zone.  相似文献   

10.
This paper reported a numerical study on the NOx emission characteristics of opposed-jet syngas diffusion flames. A narrowband radiation model was coupled to the OPPDIF program, which used detailed chemical kinetics and thermal and transport properties to enable the study of 1-D counterflow syngas diffusion flames with flame radiation. The effects of syngas composition, pressure and dilution gases on the NOx emission of H2/CO synthetic mixture flames were examined. The analyses of detailed flame structures, chemical kinetics, and nitrogen reaction pathways indicate NOx are formed through Zeldovich (or thermal), NNH and N2O routes both in the hydrogen-lean and hydrogen-rich syngas flames at normal pressure. Zeldovich route is the main NO formation route. Therefore, the hydrogen-rich syngas flames produce more NO due to higher flame temperatures compared to that for hydrogen-lean syngas flames. Although NNH and N2O routes also are the primary NO formation paths, a large amount of N2 will be reformed from NNH and N2O species. For hydrogen-rich syngas flames, the NO formation from NNH and N2O routes are lesser, where NO can be dissipated through the reactions of NH + NO  N2 + OH and NH + NO  N2O + H more actively. At a rather low pressure (0.01 atm), NNH-intermediate route is the only formation path of NO. Increasing pressure then enhances NO formation reactions, especially through Zeldovich mechanisms. However, at higher pressures (5–10 atm), NO is then converted back to N2 through reversed N2O route for hydrogen-lean syngas flames, and through NNH as well for hydrogen-rich syngas flames. In addition, the dilution effects from CO2, H2O, and N2 on NO emissions for H2/CO syngas flames were studied. The hydrogen-lean syngas flames with H2O dilution have the lowest NO production rate among them, due to a reduced reaction rate of NNH + O  NH + NO. But for hydrogen-rich syngas flames with CO2 dilution, the flame temperatures decrease significantly, which leads to a reduction of NO formation from Zeldovich route.  相似文献   

11.
Species concentration measurements specifically those associated with nitrogen oxides (NOx) can act as important validation targets for developing kinetic models to predict NOx emissions under syngas combustion accurately. In the present study, premixed combustion of syngas/air mixtures, with equivalence ratio (Φ) from 0.5 to 1.0 and H2/CO ratio from 0.25 to 1.0 was conducted in a McKenna burner operating at atmospheric pressure. Temperature and NOx concentrations were measured in the post-combustion zone. For a given H2/CO ratio, increasing the equivalence ratio from lean to stoichiometric resulted in an increase in NO and decrease in NO2 concentration near the flame. Increasing the H2/CO ratio led to a decrease in the temperature as well as the NO concentration near the flame. Based on the axial profiles above the burner, NO concentration increases right above the flame while NO2 concentration decreases through NO2-NO conversion reactions according to the path flux analysis. In addition, the present experiments were operated in the laminar region where multidimensional transport effects play significant roles. In order to account for the radial and axial diffusive and convective coupling to chemical kinetics in laminar flow, a multidimensional model was developed to simulate the post-combustion species and temperature distribution. The measurements were compared against both multidimensional computational fluid dynamics (CFD) simulations and one-dimensional burner-stabilized flame simulations. The multidimensional model predictions resulted in a better agreement with the measurements, clearly highlighting the effect of multidimensional transport.  相似文献   

12.
The turbulent jet flame in a crossflow with highly preheated diluted air has been numerically investigated. The Favre-averaged Navier–Stokes equations are solved by a finite volume method of SIMPLE type that incorporates the flamelet concept coupled with the standard kε turbulence model. The NO formation is estimated by using the Eulerian particle transport equations in a postprocessing mode. For methane and propane with various conditions of inlet air temperature and oxygen concentration, the three-dimensional characteristics of the flame are successfully captured. The jet-flame trajectory is in remarkably good agreement with the existing cold-flow correlations. When the oxygen concentration is high, the maximum flame temperature becomes high and the two fuels show quite different characteristics in the downstream region. On the other hand, for low oxygen concentrations, the temperature difference between the two fuels is relatively small and remains fairly constant throughout the combustion chamber. The propane gives a higher NO formation compared to the methane especially when the oxygen concentration is high. A higher temperature, longer residence time of the combustion gases may be responsible for the higher thermal NO formation.  相似文献   

13.
The flame structure and exhaust emissions of pinch-off flames, in which flames are separated under acoustic excitation conditions, were studied. Flame structure analysis was performed using OH1 chemiluminescence measurements, and exhaust emissions analysis was performed with a gas analyzer. Structure analysis of the pinch-off flame for acoustic excitation was performed basis the OH1 images, and various structures were confirmed according to the forcing frequency and velocity perturbation intensity. To analyze the correlation between the flame structure and NOx emission, the flame residence time and emission index of NOx (EINOx) were analyzed according to the Strouhal number. The flame residence time and EINOx decreased as the velocity perturbation intensity increased; analyzing the NOx emission characteristics is limited when based only on the flame residence time. 1/2-power scaling was followed by EINOx analysis and the Strouhal number was normalized to the flame residence time.  相似文献   

14.
The methane reforming process combined with metal–oxide reduction was examined on iron-based oxides of Ni(II)–, Zn(II)–, and Co(II)–ferrites, for the purpose of converting solar high-temperature heat to chemical fuels of CO-rich syngas and reduced metal oxide as storage and transport of solar energy. It was found that the Ni(II)-doping effectively improves the reactivity of magnetite as an oxidant for methane reforming. A two-step cyclic steam reforming of methane, which produces CO-rich syngas and hydrogen uncontaminated with carbon oxides alternately in the separate steps, was successfully demonstrated by using a ZrO2-supported Ni(II)–ferrite (Ni0.39Fe2.61O4/ZrO2) as a working material in the temperature range of 1073–1173 K. The produced CO-rich syngas had the H2/CO ratio that was more suitable for methanol production than that produced by a conventional single-step steam reforming. This syngas production using the Ni0.39Fe2.61O4/ZrO2 as an oxidant was also demonstrated under direct irradiation by a solar-simulated, high-flux visible light in laboratory-scale fixed bed system. The directly-irradiated Ni0.39Fe2.61O4/ZrO2 particles acted simultaneously as good radiant absorbers and reactive chemical reactants to yield more than 90% of methane conversion to a 2:1 molar mixture of CO and H2 under flux irradiation of 500 kW m−2 in the residence time less than 1 s.  相似文献   

15.
《Combustion and Flame》2001,124(1-2):50-64
The effectiveness of the Precessing Jet nozzle at yielding low NOx levels from burning coal was examined at the pilot scale. Thus, a coal burner of nominal thermal load of 138 kW was sampled two dimensionally, and subsequently modeled. The one-dimensional, steady-state, semiempirical mathematical model considered the release and combustion of volatiles, and subsequent oxidation of char. A comprehensive reaction scheme was formulated to account for the oxidation of the resulting CO, the formation of NO from various sources (volatile, char, preheated air) and the oxidation of H2S to SO2. The agreement between the experimental and predicted profiles of coal burnout, [O2], [NO] and gas temperature was not good near the burner; however, the agreement improved in the postflame region. The model was also used to simulate the center line characteristics of the same flame, but with the secondary air preheated to 500°C. This flame was then scaled for constant velocity and constant residence time to 20 MW. It was deduced that constant residence-time scaling predicts ignition and combustion of the coal at the same axial location as the baseline flame. However, constant velocity scaling shifts combustion closer to the burner. Constant-velocity scaling was found to be more suitable for the theoretical scaling of pulverized coal flames. It was not possible to comment on the potential of the burner for low NOx in cement kilns, because the measured and computed gas temperatures were low. However, the model predicted low concentrations of fuel NOx.  相似文献   

16.
Syngas is a promising alternative fuel for stationary power generation due to cleaner combustion than convectional fossil fuels. During the gasification processes, the by-products of CO2, H2O, or N2 may be present in the syngas mixture to control the flame temperature and emissions. Several studies indicated that syngas with dilutions is capable of reducing pollutant emissions such as NOx emissions. This work applied a numerical model of opposed-jet diffusion fames to explore the dilution effects on NOx formation and differentiate the inert effect, thermal/diffusion effect, chemical effect, and radiation effect from CO2, H2O, or N2 dilutions. The numerical study was performed by a revised OPPDIF program coupling with narrowband radiation model and detail chemical mechanism. The dilution effects on NOx formation were analyzed by comparing the realistic and hypothetical cases. Regardless the diluent types, the inert effect is the main cause to reduce NO production, followed by chemical effect and radiation effect. The thermal/diffusion effect may promote NO formation because the preferential diffusion due to different diffusivities between diluents and syngas magnifies the reaction rate locally. CO2 dilution reduces NO by radiation effect at low strain rate, and contributes NO reduction by chemical effect at high strain rate. At the same dilution percentage, CO2 dilution reduces NO production the most, followed by H2O and N2. Besides the thermal/diffusion effect, the chemical effect of H2O enhances NO production through thermal route and reburn route.  相似文献   

17.
This study focuses on a CFD modelling of biomass-derived syngas co-firing with coal in an older mid-sized PC-fired boiler of type OP-230 with low-emission burners on the front wall. The simulations were performed to determine whether the boiler can be retrofitted for the fulfilment of the prospective environmental protection regulations relating to levels of NOX emissions. The improvement of the air staging via the dual-fuel technique was based on the indirect co-firing technology. The impact of two arrangements of dedicated syngas nozzles (below and above the existing coal burners), two syngas compositions and two heat replacements (5% and 15%) on the course of thermal processes in a furnace was tested. The reductions in NOX emissions were predicted relative to the baseline when only coal is combusted. The highest reduction of about 38% was achieved with the syngas nozzles below the existing coal burners and 15% heat replacement. This arrangement of nozzles offers the residence time sufficient to co-fire coal with waste derived syngas. A lower reduction in NOX emissions was obtained with the nozzles above the burners as the enlargement of local fuel rich zone near syngas injection becomes significant for 15% heat replacement. Results provide for the decreasing impact of methane content along with the increase of syngas heat input. The avoided CO2 emissions through the syngas indirect co-firing with coal in the boiler are linear function of heat replacements.  相似文献   

18.
A numerical study of an axisymmetric coflow laminar ethylene-air diffusion flame at atmospheric pressure was conducted using detailed chemistry and complex thermal and transport properties and two different methodologies: (1) the direct simulation method of solving the two-dimensional axisymmetric elliptic governing equations, and (2) the steady-state stretched diffusion flamelet model. Soot formation and radiative heat transfer were not taken into account in these calculations, both for simplicity and to avoid the complications associated with the issues of how to incorporate these chemical and physical processes into the flamelet model. The same reaction mechanism and thermal and transport properties were used in the 2D direct simulation and the generation of the flamelet library. The flamelet library was generated from the solutions of counterflow ethylene-air diffusion flames at a series of stretch rates. Results of the 2D direct simulation and the flamelet model are compared in physical space. Although the overall results of the flamelet model are qualitatively similar to those of the direct simulation, significant differences exist between the results of the two methods even for temperature and major species. The direct simulation method predicts that the peak concentrations of CO2 and H2O occur in different regions in the flame, while the flamelet model results show that the peak concentrations of CO2 and H2O occur in the same region. The flamelet model predicts an overly rapid approach to the equilibrium structure in the downstream region, leading to significantly higher flame temperatures. The main reason for the failure of the flamelet model in the downstream region is due to the neglect of the effects of multidimensional convection and diffusion and the fundamental difference in the chemical structure between a coflow diffusion flame and a counterflow diffusion flame. The findings of this paper are highly relevant to understanding the flamelet model results in the calculations of multidimensional turbulent diffusion flames.  相似文献   

19.
The high temperature diluted air combustion, which improves the flame stability while lowers the NO emission level, has been numerically investigated. The Favre-averaged Navier–Stokes equations are solved by a finite volume method of SIMPLE type that incorporates the laminar flamelet concept with the standard kε turbulence model. The NO formation is estimated by solving the Eulerian particle transport equations in a postprocessing mode. Calculations are performed for a coflowing jet flame for various conditions of inlet air temperature and oxygen concentration. A production rate analysis of elementary reactions reveals major paths for NO formation. When the oxygen concentration is high, the reaction zone is formed near the fuel nozzle and the NO formation by the thermal mechanism becomes dominant, due to the increase in flame temperature. On the other hand, when the oxygen concentration is low, the reaction is spread out more uniformly in the furnace. The NO formation by the prompt route is dominant compared to other routes especially when the air is diluted with nitrogen.  相似文献   

20.
Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar have been numerically simulated with detailed chemistry. The combination of H2, CO2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO2. A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO2, N2O and Fenimore are taken into account to separately evaluate the effects of CO2 addition on NO emission characteristics. The increase of added CO2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N2O and NO2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO2 quantity increase, NO production is remarkably augmented. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号