首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Smart drug delivery systems with on‐demand drug release capability are rather attractive to realize highly specific cancer treatment. Herein, a novel light‐responsive drug delivery platform based on photosensitizer chlorin e6 (Ce6) doped mesoporous silica nanorods (CMSNRs) is developed for on‐demand light‐triggered drug release. In this design, CMSNRs are coated with bovine serum albumin (BSA) via a singlet oxygen (SO)‐sensitive bis‐(alkylthio)alkene (BATA) linker, and then modified with polyethylene glycol (PEG). The obtained CMSNR‐BATA‐BSA‐PEG, namely CMSNR‐B‐PEG, could act as a drug delivery carrier to load with either small drug molecules such as doxorubicin (DOX), or larger macromolecules such as cis‐Pt (IV) pre‐drug conjugated third generation dendrimer (G3‐Pt), both of which are sealed inside the mesoporous structure of nanorods by BSA coating. Upon 660 nm light irradiation with a rather low power density, CMSNRs with intrinsic Ce6 doping would generate SO to cleave BATA linker, inducing detachment of BSA‐PEG from the nanorod surface and thus triggering release of loaded DOX or G3‐Pt. As evidenced by both in vitro and in vivo experiments, such CMSNR‐B‐PEG with either DOX or G3‐Pt loading offers remarkable synergistic therapeutic effects in cancer treatment, owing to the on‐demand release of therapeutics specifically in the tumor under light irradiation.  相似文献   

2.
The synthesis (by a facile two‐step sol–gel process), characterization, and application in controlled drug release is reported for monodisperse core–shell‐structured Fe3O4@nSiO2@mSiO2@NaYF4: Yb3+, Er3+/Tm3+ nanocomposites with mesoporous, up‐conversion luminescent, and magnetic properties. The nanocomposites show typical ordered mesoporous characteristics and a monodisperse spherical morphology with narrow size distribution (around 80 nm). In addition, they exhibit high magnetization (38.0 emu g?1, thus it is possible for drug targeting under a foreign magnetic field) and unique up‐conversion emission (green for Yb3+/Er3+ and blue for Yb3+/Tm3+) under 980 nm laser excitation even after loading with drug molecules. Drug release tests suggest that the multifunctional nanocomposites have a controlled drug release property. Interestingly, the up‐conversion emission intensity of the multifunctional carrier increases with the released amount of model drug, thus allowing the release process to be monitored and tracked by the change of photoluminescence intensity. This composite can act as a multifunctional drug carrier system, which can realize the targeting and monitoring of drugs simultaneously.  相似文献   

3.
A smart drug delivery system integrating both photothermal therapy and chemotherapy for killing cancer cells is reported. The delivery system is based on a mesoporous silica‐coated Pd@Ag nanoplates composite. The Pd@Ag nanoplate core can effectively absorb and convert near infrared (NIR) light into heat. The mesoporous silica shell is provided as the host for loading anticancer drug, doxorubicin (DOX). The mesoporous shell consists of large pores, ~10 nm in diameter, and allows the DOX loading as high as 49% in weight. DOX loaded core–shell nanoparticles exhibit a higher efficiency in killing cancer cells than free DOX. More importantly, DOX molecules are loaded in the mesopores shell through coordination bonds that are responsive to pH and heat. The release of DOX from the core‐shell delivery vehicles into cancer cells can be therefore triggered by the pH drop caused by endocytosis and also NIR irradiation. A synergistic effect of combining chemotherapy and photothermal therapy is observed in our core‐shell drug delivery system. The cell‐killing efficacy by DOX‐loaded core–shell particles under NIR irradiation is higher than the sum of chemotherapy by DOX‐loaded particles and photothermal therapy by core–shell particles without DOX.  相似文献   

4.
The development of cancer combination therapies, many of which rely on nanoscale theranostic agents, has received increasing attention in recent years. In this work, polyethylene glycol (PEG) modified mesoporous silica (MS) coated single‐walled carbon nanotubes (SWNTs) are fabricated and utilized as a multifunctional platform for imaging guided combination therapy of cancer. A model chemotherapy drug, doxorubicin (DOX), could be loaded into the mesoporous structure of the obtained SWNT@MS‐PEG nano‐carriers with high efficiency. Upon stimulation under near‐infrared (NIR) light, photothermally triggered drug release from DOX loaded SWNT@MS‐PEG is observed inside cells, resulting in a synergistic cancer cell killing effect. As revealed by both photoacoustic (PA) and magnetic resonance (MR) imaging, we further uncover efficient tumor accumulation of SWNT@MS‐PEG/DOX after intravenous injection into mice. In vivo combination therapy using this agent is further demonstrated in a mouse tumor model, achieving a remarkable synergistic anti‐tumor effect superior to that obtained by mono‐therapy. Our work presents a new type of theranostic nano‐platform, which could load therapeutic molecules with high efficiency, be responsive to external NIR stimulation, and at the same time serve as a diagnostic imaging agent.  相似文献   

5.
A novel kind of rattle‐type hollow magnetic mesoporous sphere (HMMS) with Fe3O4 particles encapsulated in the cores of mesoporous silica microspheres has been successfully fabricated by sol–gel reactions on hematite particles followed by cavity generation with hydrothermal treatment and H2 reduction. Such a structure has the merits of both enhanced drug‐loading capacity and a significant magnetization strength. The prepared HMMSs realize a relatively high storage capacity up to 302 mg g?1 when ibuprofen is used as a model drug, and the IBU–HMMS system has a sustained‐release property, which follows a Fick's law.  相似文献   

6.
Biology provides a range of materials, mechanisms, and insights to meet the diverse requirements of nanomedicine. Here, a biologically based nanoparticle coating system that offers three characteristic features is reported. First, the coating can be self‐assembled through a noncovalent biospecific interaction mechanism between a lectin protein (Concanavalin A) and the polysaccharide glycogen. This biospecific self‐assembly enables the coating to be applied simply without the generation of covalent bonds. Second, glycoprotein‐based biofunctionality can be incorporated into the coating through the same noncovalent biospecific interaction mechanism. Here, the glycoprotein transferrin is incorporated into the coating since this moiety is commonly used to target cancer cells through a receptor‐mediated endocytosis mechanism. Third, the coating can be triggered to disassemble in response to a reduction in pH that is characteristic of endosomal uptake. In a proof‐of‐concept study, comparing coated and uncoated nanoparticles, model drug‐loaded nanoparticles (doxorubicin‐loaded mesoporous silica nanoparticles) are prepared and it is observed that the coated nanoparticle has enhanced cytotoxicity for cancer cell lines but attenuated cytotoxicity for noncancerous cell lines. These studies demonstrate that biology provides unique materials and mechanism appropriate to meet the needs for emerging applications in the medical and life sciences.  相似文献   

7.
A novel photo‐responsive drug carrier that doubles as a photothermal agent with a nanocookie‐like structure is constructed by coating amorphous carbon on a mesoporous silica support self‐assembled on a sheet of reduced graphene oxide. With a large payload (0.88 mmolg?1) of a hydrophobic anticancer drug, (S)‐(+)‐camptothecin (CPT), nanocookies simultaneously provide a burst‐like drug release and intense heat upon near‐infrared exposure. Being biocompatible yet with a high efficiency for cell uptake, nanocookies have successfully eradicated subcutaneous tumors in 14 days following a single 5 min NIR irradiation without distal damage. These results demonstrate that the nanocookie is an excellent new delivery platform for local, on‐demand, NIR‐responsive, combined chemotherapy/hyperthermia for tumor treatment and other biomedical applications.  相似文献   

8.
Here, a new method based on sol–gel electrophoretic deposition to produce uniform high‐quality inorganic conformal coatings on mesoporous nano‐particulate films is presented. This novel sol preparation method allows for very fine control of the coating properties, thus inducing new adjustable functionalities to these electrodes. It is shown that the deposition of an amorphous TiO2 and/or MgO shell onto photoanodes used in dye‐sensitized solar cells (DSSCs) improves their light‐to‐electric‐power conversion efficiency without the need for sintering. It is proposed that the amorphous TiO2 coating improves the electronic inter‐particle connection and passivates the surface states. The insulating MgO coating further reduces the electron transfer from the conduction band into the electrolyte while the electron injection from the excited dye state remains unperturbed for thin coatings. Using a low‐temperature method for DSSC production on plastic substrates, a maximum efficiency of 6.2% applying pressure together with an optimized TiO2 coating is achieved. For systems that cannot be pressed a conversion efficiency of 5.1% is achieved using a double shell TiO2/MgO coating.  相似文献   

9.
Here, a facile approach for the in situ fabrication of metal sulfide (MS)‐graphene (G) nanocomposite, CdS‐G and PbS‐G, on indium?tin oxide (ITO) glass is demonstrated using a simple and scalable direct‐laser‐writing method in ambient air. Through the CO2 laser irradiation of a metal‐complex‐containing polyethersulfone layer on ITO glass, both the crystallization of laser‐induced MS (LIMS) and the formation of laser‐induced graphene (LIG) are synchronously achieved in one step, giving rise to a laser‐induced MS‐G nanocomposite photoelectrode, denoted as LI‐MS‐G@ITO. In such a laser‐scribing process, polyethersulfone not only acts as the carbon source to grow LIG but also provides an in situ source of S2? to produce LIMS with the aids of carbothermic reduction of sulfur element in polyethersulfone. The obtained LI‐MS‐G@ITO inherits the porous network architecture of polyethersulfone‐derived LIG, in which the LIMS nanocrystals uniformly decorate the multilayered graphene sheets with good dispersion, presenting a fast and stable photocurrent response with high reproducibility, which, as a proof‐of‐concept, further facilitates the use of a LI‐CdS‐G@ITO photoanode as an efficient transducer for photoelectrochemical detection of Cu2+ with high sensitivity and selectivity. This work can offer a universal and versatile protocol for the in situ and synchronous fabrication of novel MS‐G nanocomposites for sensitive photoelectrochemical analysis.  相似文献   

10.
Hierarchically porous composites with mesoporous carbon wrapping around the macroporous graphene aerogel can combine the advantages of both components and are expected to show excellent performance in electrochemical energy devices. However, the fabrication of such composites is challenging due to the lack of an effective strategy to control the porosity of the mesostructured carbon layers. Here an interface‐induced co‐assembly approach towards hierarchically mesoporous carbon/graphene aerogel composites, possessing interconnected macroporous graphene networks covered by highly ordered mesoporous carbon with a diameter of ≈9.6 nm, is reported. And the orientation of the mesopores (vertical or horizontal to the surface of the composites) can be tuned by the ratio of the components. As the electrodes in supercapacitors, the resulting composites demonstrate outstanding electrochemical performances. More importantly, the synthesis strategy provides an ideal platform for hierarchically porous graphene composites with potential for energy storage and conversion applications.  相似文献   

11.
Gaining spatially resolved control over the mechanical properties of materials in a remote, programmable, and fast‐responding way is a great challenge toward the design of adaptive structural and functional materials. Reversible, temperature‐sensitive systems, such as polymers equipped with supramolecular units, are a good model system to gain detailed information and target large‐scale property changes by exploiting reversible crosslinking scenarios. Here, it is demonstrated that coassembled elastomers based on polyglycidols functionalized with complementary cyanuric acid and diaminotriazine hydrogen bonding couples can be remotely modulated in their mechanical properties by spatially confined laser irradiation after hybridization with small amounts of thermally reduced graphene oxide (TRGO). The TRGO provides an excellent photothermal effect, leads to light‐adaptive steady‐state temperatures, and allows local breakage/de‐crosslinking of the hydrogen bonds. This enables fast self‐healing and spatiotemporal modulation of mechanical properties, as demonstrated by digital image correlation. This study opens pathways toward light‐fueled and light‐adaptive graphene‐based nanocomposites employing molecularly controlled thermal switches.  相似文献   

12.
Nanorod‐based drug delivery systems have attracted great interest because of their enhanced cell internalization capacity and improved drug loading property. Herein, novel mesoporous silica nanorods (MSNRs) with different lengths are synthesized and used as nanocarriers to achieve higher drug loading and anticancer activity. As expected, MSNRs‐based drug delivery systems can effectively enhance the loading capacity of drugs and penetrate into tumor cells more rapidly than spherical nanoparticles due to their greater surface area and trans‐membrane transporting rates. Interestingly, these tailored MSNRs also enhance the cellular uptake of doxorubicin (DOX) in cancer cells, thus significantly enhancing its anticancer efficacy for hundreds of times by inducing of cell apoptosis. Internalized MSNRs‐DOX triggers intracellular reactive oxygen species (ROS) overproduction, which subsequently activates p53 and mitogen‐activated protein kinases (MAPKs) pathways to promote cell apoptosis. MSNRs‐DOX nanosystem also shows prolonged blood circulation time in vivo. In addition, MSNRs‐DOX significantly inhibits in vivo tumor growth in nude mice model and effectively reduced its in vivo toxicity. Therefore, this study provides an effective and safe strategy for designing chemotherapeutic agents for precise cancer therapy.  相似文献   

13.
The development of active corrosion protection systems for metallic substrates is an issue of prime importance for many industrial applications. The present work shows a new contribution to the design of a new protective system based on surface modified mesoporous silica containers. Incorporation of silica‐based containers into special sol–gel matrix allows for a self‐healing effect to be achieved during the corrosion process. The self‐healing ability occurs due to release of entrapped corrosion inhibitors in response to pH changes caused by the corrosion process. A silica–zirconia‐based hybrid film is used in this work as a coating matrix deposited on AA2024 aluminum alloy. Mesoporous silica nano‐particles are covered layer‐by‐layer with polyelectrolyte layers and loaded with inhibitor [2‐(benzothiazol‐2‐ylsulfanyl)‐succinic acid]. The hybrid film with nanocontainers reveals enhanced long‐term corrosion protection in comparison with the individual sol–gel films. The scanning vibrating electrode technique also shows an effective healing ability of containers to cure the corrosion defects. This effect is due to the release of the corrosion inhibitor triggered by the corrosion processes started in the cavities. The approach described herein can be used in many applications where active corrosion protection of materials is required.  相似文献   

14.
The combination of one‐dimensional and two‐dimensional building blocks leads to the formation of hierarchical composites that can take full advantages of each kind of material, which is an effective way for the preparation of multifunctional materials with extraordinary properties. Among various building blocks, nanocarbons (e.g., carbon nanotubes and graphene) and layered double hydroxides (LDHs) are two of the most powerful materials that have been widely used in human life. This Feature Article presents a state‐of‐the‐art review of hierarchical nanocomposites derived from nanocarbons and LDHs. The properties of nanocarbons, LDHs, as well as the combined nanocomposites, are described first. Then, efficient and effective fabrication methods for the hierarchical nanocomposites, including the reassembly of nanocarbons and LDHs, formation of LDHs on nanocarbons, and formation of nanocarbons on LDHs, are presented. The as‐obtained nanocomposites derived form nanocarbons and LDHs exhibited excellent performance as multifunctional materials for their promising applications in energy storage, nanocomposites, catalysis, environmental protection, and drug delivery. The fabrication of LDH/carbon nanocomposites provides a novel method for the development of novel multifunctional nanocomposites based on the existing nanomaterials. However, knowledge of their assembly mechanism, robust and precise route for LDH/nanocarbon hybrid with well designed structure, and the relationship between structure, properties, and applications are still inadequate. A multidisciplinary approach from the scope of materials, physics, chemistry, engineering, and other application areas, is highly required for the development of this advanced functional composite materials.  相似文献   

15.
A single‐step, room‐temperature, and scalable electrophoretic deposition process is reported to form nanocomposites on any electrically conductive surface with metal nanoparticle decorated carbon nanotubes (CNTs). The contact angles (CAs) can be easily tuned from ≈60° to 168° by varying the deposition voltage, while hydrophobicity and superhydrophobicity surprisingly arise from the hydrophilic CNTs being deposited. The relatively high voltage tends to vertically align CNTs during deposition, leading to architectural micro/nanoscale roughness on the surface. The combination of the multiscale roughness along with the low surface energy of hydrocarbon functional groups on the CNT surface has enabled facile wettability control, including the Petal and Lotus effects. Further, the relatively vertical orientation of the CNTs, without any coating, allows for current and heat transfer along their axis with superior conductivity. Similar behavior in terms of CA control is seen for all three divalent metal ions in the deposition solution (i.e., Cu2+, Ni2+, and Zn2+) that are used to charge the CNTs while eventually getting co‐deposited. This implies that this method could possibly be extended to other metals by selecting appropriate charging salt. A patterning technique is also demonstrated for facile fabrication of superhydrophobic CNT‐metal islands surrounded by hydrophilic CNT coating.  相似文献   

16.
Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially‐graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium‐ion batteries. In this work, we successfully implemented a “brick‐and‐mortar” approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin‐based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.  相似文献   

17.
A high‐energy conversion efficiency of 8.2% at 100 mW cm?2 is reported, one of the highest values for N719‐based, solid‐state, dye‐sensitized solar cells (ssDSSCs). The solar cells are based on hierarchical double‐shell nanostructures consisting of inner SnO2 hollow spheres (SHS) surrounded by outer TiO2 nanosheets (TNSs). Deposition of the TNS on the SHS outer surface is performed via solvothermal reactions in order to generate a double‐shell SHS@TNS nanostructure that provides a large surface area and suppresses recombination of photogenerated electrons. An organized mesoporous (OM)‐TiO2 film with high porosity, large pores, and good interconnectivity is also prepared via a sol‐gel process using a poly(vinyl chloride)‐g‐poly(oxyethylene methacrylate) (PVC‐g‐POEM) graft copolymer template. This film is utilized as a matrix to disperse the double‐shell nanostructures. Such nanostructures provide good pore‐filling for solid polymer electrolytes, faster electron transfer, and enhanced light scattering, as confirmed by reflectance spectroscopy, incident photon‐to‐electron conversion efficiency (IPCE), and intensity‐modulated photocurrent spectroscopy (IMPS)/intensity‐modulated photovoltage spectroscopy (IMVS).  相似文献   

18.
Nanocarriers capable of circumventing various biological barriers between the site of administration and the therapeutic target hold great potential for cancer treatment. Herein, a redox‐sensitive, hyaluronic acid‐decorated graphene oxide nanosheet (HSG) is developed for tumor cytoplasm‐specific rapid delivery using near‐infrared (NIR) irradiation controlled endo/lysosome disruption and redox‐triggered cytoplasmic drug release. Hyaluronic acid (HA) modification through redox‐sensitive linkages permits HSG a range of advantages over the standard graphene oxide, including high biological stability, enhanced drug‐loading capacity for aromatic molecules, HA receptor‐mediated active tumor targeting, greater NIR absorption and thermal energy translation, and a sharp redox‐dependent response for accelerated cargo release. Results of in vivo and in vitro testing indicate a high loading of doxorubicin (DOX) onto HSG. Selective delivery to HA‐receptor overexpressing tumors is achieved through passive and active targeting with minimized unfavorable interactions with blood components. Cytoplasm‐specific DOX delivery is then achieved through NIR controlled endo/lysosome disruption along with redox‐triggered release of DOX in glutathione rich areas. HSG's specificity is resulted in enhanced cytotoxicity of chemotherapeutics with minimal collateral damage to healthy tissues in a xenograft animal tumor model. HSG is validated the programmed delivery of therapeutic agents in a spatiotemporally controlled manner to overcome multiple biological barriers results in specific and enhanced cancer treatment.  相似文献   

19.
Lithium‐oxygen (Li‐O2) batteries are one of the most promising candidates for high‐energy‐density storage systems. However, the low utilization of porous carbon and the inefficient transport of reactants in the cathode limit terribly the practical capacity and, in particular, the rate capability of state‐of‐the‐art Li‐O2 batteries. Here, free‐standing, hierarchically porous carbon (FHPC) derived from graphene oxide (GO) gel in nickel foam without any additional binder is synthesized by a facile and effective in situ sol‐gel method, wherein the GO not only acts as a special carbon source, but also provides the framework of a 3D gel; more importantly, the proper acidity via its intrinsic COOH groups guarantees the formation of the whole structure. Interestingly, when employed as a cathode for Li‐O2 batteries, the capacity reaches 11 060 mA h g?1 at a current density of 0.2 mA cm?2 (280 mA g?1); and, unexpectedly, a high capacity of 2020 mA h g?1 can be obtained even the current density increases ten times, up to 2 mA cm?2 (2.8 A g?1), which is the best rate performance for Li‐O2 batteries reported to date. This excellent performance is attributed to the synergistic effect of the loose packing of the carbon, the hierarchical porous structure, and the high electronic conductivity of the Ni foam.  相似文献   

20.
A zeolitic‐imidazolate‐framework (ZIF) nanocrystal layer‐protected carbonization route is developed to prepare N‐doped nanoporous carbon/graphene nano‐sandwiches. The ZIF/graphene oxide/ZIF sandwich‐like structure with ultrasmall ZIF nanocrystals (i.e., ≈20 nm) fully covering the graphene oxide (GO) is prepared via a homogenous nucleation followed by a uniform deposition and confined growth process. The uniform coating of ZIF nanocrystals on the GO layer can effectively inhibit the agglomeration of GO during high‐temperature treatment (800 °C). After carbonization and acid etching, N‐doped nanoporous carbon/graphene nanosheets are formed, with a high specific surface area (1170 m2 g?1). These N‐doped nanoporous carbon/graphene nanosheets are used as the nonprecious metal electrocatalysts for oxygen reduction and exhibit a high onset potential (0.92 V vs reversible hydrogen electrode; RHE) and a large limiting current density (5.2 mA cm?2 at 0.60 V). To further increase the oxygen reduction performance, nanoporous Co‐Nx/carbon nanosheets are also prepared by using cobalt nitrate and zinc nitrate as cometal sources, which reveal higher onset potential (0.96 V) than both commercial Pt/C (0.94 V) and N‐doped nanoporous carbon/graphene nanosheets. Such nanoporous Co‐Nx/carbon nanosheets also exhibit good performance such as high activity, stability, and methanol tolerance in acidic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号