首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 570 毫秒
1.
xBa_(0.95)Sr_(0.05)TiO_3–(1-x)BiFe_(0.9)Gd_(0.1)O_3[x BST–(1-x)BFGO](x = 0.00, 0.10, 0.20 and 0.25) multiferroic ceramics were prepared by the standard solid-state reaction technique. Structural characterization was performed by X-ray diffraction. All the samples showed rhombohedral distorted perovskite structure. Surface morphology of the ceramics was studied by the field emission scanning electron microscope(FESEM). From the FESEM observation, the grain size was observed to be decreased with increasing BST content. Enhanced magnetic properties were observed in BFGO with the increase in BST content because of large lattice distortion. The complex initial permeability increased with the increasing of BST content. The study of dielectric properties showed that the dielectric constant increased, whereas dielectric loss decreased with increasing of BST content due to the reduction of oxygen vacancies. An analysis of the electric impedance and modulus with frequency was performed at different temperatures. Non-Debye-type relaxation processes occur in the compound which was confirmed from the nature of the Cole–Cole plot. The DC conductivity was found to increase with the rise in temperature which indicates the semiconducting behavior of the compound with characteristics of the negative temperature coefficient of resistance. The activation energy, responsible for the relaxation determined from the modulus spectra(0.246 eV), was found to be almost same as the value obtained from the impedance study(0.240 eV), indicating that charge carriers overcome the same energy barrier during relaxation. The frequency response of imaginary parts of electric impedance and modulus suggested that the relaxation in xB ST–(1-x)BFGO ceramics follows the same mechanism at various temperatures.  相似文献   

2.
The electrical properties of La0.6Sr0.4Co1-yFeyO3 (LSCF, y=0-1.0) cathode materials were measured by DC four probes, X-ray photo-electron spectrum (XPS) was also introduced to determine the chemical state of Co, F.e ions in LSCF. It is found that the electrical conductivity of each sample has a maximum value with increasing temperature. XPS analysis shows that Co ion has three different chemical states, corresponding to two with Fe ion. The analyses indicates that the small-polaron hopping mechanism dominates the electron conduction at low temperature, while at high temperature, the three factors such as the thermally activated disproportionation of Co^3+ ions into Co^2+ and Co^4+ pairs, the ionic compensation of oxygen vacancies formed at high temperatures, and Fe^4+ ions charge compensation preferential to Co^4+, all contribute to electrical conduction.  相似文献   

3.
Classical powder metallurgy followed by either hot isostatic pressing(HIPing) or repressing–annealing process was used to produce Cu–graphene nanoplatelets(GNPs) nanocomposites in this work. A wet mixing method was used to disperse the graphene within the matrix. The results show that a uniform dispersion of GNPs at low graphene contents could be achieved, whereas agglomeration of graphene was revealed at higher graphene contents. Density evaluations showed that the relative density of pure copper and copper composites increased by using the post-processing techniques.However, it should be noticed that the efficiency of HIPing was remarkably higher than repressing–annealing process, and through the HIPing, fully dense samples were achieved. The Vickers hardness results showed that the reconsolidation steps can improve the mechanical strength of the specimens up to 50% owing to the progressive porosity elimination after reconsolidation. The thermal conductivity results of pure copper and composites at high temperatures showed that the postprocessing techniques could enhance the conductivity of materials significantly.  相似文献   

4.
Multiwalled carbon nanotubes(CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl.The Mo-coated CNTs(Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering.The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vol.%-7.5 vol.%,while some Mo-CNT clusters were clearly observed at additions of 10.0 vol.%-15.0 vol.% Mo-CNTs in the mixture.The mechanical,electrical,and thermal properties of the Mo-CNT/Cu composites were characterized,and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens,respectively.Moreover,the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu.The uncoated CNT/Cu composites were fabricated by the similar processes,and the measured tensile strength,hardness,thermal conductivity,and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.  相似文献   

5.
Reduced graphene oxide(RGO) and copper composites(RGO/Cu) were successfully fabricated based on a molecular-level mixing method(MLM). The composite powders were reduced in H2 at 350, 450, and 550 °C and then consolidated by spark plasma sintering(SPS) in order to evaluate the effect of H2 reduction temperature on the properties of the composites. The results indicate that the strengths of the composite decrease with the increase of H2 reduction temperature, while the electrical conductivity reaches its maximum at 450 °C and minimum at 550 °C. Hot rolling could benefit the electrical conductivity. The yield strength of the RGO/Cu composite reduced to 337 MPa at 350 °C. The electrical conductivity of the RGO/Cu composite reduced at 450 °C after hot rolling reaches 60.26% IACS. The properties of the RGO/Cu composites can be designed by adjusting the reduction degree of RGO and by hot rolling.  相似文献   

6.
The constant increase in power and heat flux densities encountered in electronic devices fuels a rising demand for lightweight heat sink materials with suitable thermal properties.In this study,discontinuous pitch-based carbon fiber reinforced aluminum matrix(Al-CF) composites with aluminum–silicon alloy(Al–Si) were fabricated through hot pressing.The small amount of Al–Si contributed to enhance the sintering process in order to achieve fully dense Al–CF composites.A thermal conductivity and CTE of 258 W/(m K) and 7.0 9 10-6/K in the in-plane direction of the carbon fibers were obtained for a(Al95 vol%+ Al–Si5 vol%)-CF50 vol%composite.Carbon fiber provides the reducing of CTE while the conservation of thermal conductivity and weight of Al.The achieved CTEs satisfy the standard requirements for a heat sink material,which furthermore possess a specific thermal conductivity of 109 W cm3/(m K g).This simple process allows the low-cost fabrication of Al–CF composite,which is applicable for a lightweight heat sink material.  相似文献   

7.
Magnesium alloys based on Nd and Zn are promising materials for both aviation industry and medical applications.Superior mechanical properties of these materials can be achieved by thermomechanical processing such as extrusion or rolling and by aging treatment, which can significantly strengthen the alloy. The question remains especially about the connection of texture strength created in the alloys based on the specific conditions of preparation. This work focuses on the Mg–3 Nd–0.5 Zn magnesium alloy prepared by hot extrusion of the as-cast state at two different temperatures combined with heat pre-treatment. Extrusion ratio of 16 and rate of 0.2 mm/s at 350 and 400 °C were selected for material preparation. The structures of prepared materials were studied by scanning electron microscopy and transmission electron microscopy. The effect of microstructure on mechanical properties was evaluated. Obtained results revealed the strong effect of thermal pre-treatment on final microstructure and mechanical properties of extruded materials. The Hall–Petch relation between grain size and tensile yield strength has been suggested in this paper based on the literature review and presented data. The observed behavior strongly supports the fact that the Hall–Petch of extruded Mg–3Nd–0.5 Zn alloys with different texture intensities cannot be clearly estimated and predicted. In addition, Hall–Petch relations presented in literature can be sufficiently obtained only for fraction of the Mg–3Nd–0.5 Zn alloys.  相似文献   

8.
In this work, the electrical properties of carbon-nickel composite films deposited at different time(50-600 s) were investigated. The films were grown by radio frequency magnetron sputtering on glass substrates at room temperature. The electrical conductivity of the films was investigated in the temperature range of 15-500 K.The conductivity data in the temperature range of400-500 K show the extended state conduction mechanism, while the multiphonon hopping(MPH) conduction is found to dominate the electrical transport in the temperature range of 150-300 K. The films deposited at 180 s have the maximum conductivity. The conductivity at T < 60 K could be described in terms of variable range hopping(VRH) conduction. The localized state density around Fermi level(N(E_F)) at low temperature for the films deposited at 180 s has the minimum value of about 4.02 × 1021 cm-3·eV-1. The average hopping distance(Rhop) for the films deposited at 180 s has the maximum value of about 3.51 × 10-7 cm.  相似文献   

9.
Felt base carbon/carbon composites fabricated by super-high pressure impregnation carbonization process (SPIC) were heat treated at high temperature 2773K. The oxidation properties of felt base carbon/carbon composites were investigated at different temperatures (773-1173K), and the microstructures of carbon/carbon composites were studied by SEM and X-ray diffraction. The experimental results showed that the interlaminar distance of (002) plane (d002 ) deceased while the microcrystaUine stack height (Lc) increased. The oxidation rate of felt base carbon/carbon composites was invariable at certain temperatures. The oxidation mechanism of carbon/carbon composites changed remarkably at the oxidation temperature 973K. At the initial oxidation stage of carbon/carbon composites, carbon matrix was oxidized much more rapidly than carbon felt.  相似文献   

10.
The electrochemical reduction mechanism of hafnium ion(Ⅳ) was studied in NaCl–KCl–K_2HfCl_6 melts on a molybdenum electrode. The cyclic voltammetry study shows that Hf(Ⅳ) is reduced to hafnium metal in double two-electron process, that is: Hf(Ⅳ)+2e~-→Hf(Ⅱ) and Hf(Ⅱ)+2e~-→Hf, and the electrochemical reduction of Hf(Ⅳ) process was diffusion-controlled. The diffusion coefficients were calculated at several temperatures, and the results obey the Arrhenius law. According to the relationship of lnD versus 1/T,the corresponding activation energy was determined to be 158.8 kJ ·mol~(-1). The square wave voltammetry results further confirm the reduction mechanism of hafnium.  相似文献   

11.
In this work, we have presented a spin-coating method to produce thin films started with pure BiCrO_3(BCO) and ended up with BiFeO_3(BFO) by increasing x values in the(BiFeO_3)_x–(BiCrO_3)_(1-x)composites. All the produced thin films have been crystallized at the annealing temperatures of 400 °C for 0.5 h. The XRD and EDAX spectrums give insight that the two crystal phases related to BCO and BFO stayed together within the thin film matrices. SEM analysis showed that the prepared composite had macroporous morphology with interconnected pores and its width(size) decreased with increasing x values. The strong correlations are observed among the microstructure, dielectric, ferroelectric, ferromagnetic properties and Fe concentration. Among all composites, the composition of 0.75 shows an attractive magnetization, polarization, switching and improved dielectric behaviors at room temperature. Significant increase in the multiferroic characteristics of 0.75 composition is due to arise of lower leakage current by causing reduction in oxygen vacancy density, and enhancement of super-exchange magnetic interaction between Fe~(3+) and Cr~(3+) at BFO/BCO interface layers. Our result shows that the thin layer on Pt(111)/Ti/SiO_2/Si substrate possesses simultaneously improved ferroelectric and ferromagnetic properties which make an inaccessible potential application for nonvolatile ferroelectric memories.  相似文献   

12.
Perovskite material is one of the promising classes of redox catalysts for hydrogen production through two-step thermochemical H20 splitting. Herein, an analogue of La_(1-x)Ca_xMnO_3 perovskite was systematically investigated as a catalyst for thermochemical H2 evolution. The Ca doping level(x = 0.2, 0.4, 0.6, 0.8) and re-oxidation temperature were comprehensively optimized for the improvement of catalytic performance. According to our experimental results, La_(0.6)-Ca_(0.4)MnO_3 perovskite displayed the highest yield of H2 at the re-oxidation temperature of 900℃ and the obtained H2 production was-10 times higher than that of the benchmark ceria catalyst under the same experimental condition. More importantly, La_(0.6)Ca_(0.4)MnO_3 perovskite catalyst exhibited impressive cyclic stability in repetitive O_2 and H_2 test.  相似文献   

13.
LaFe13-xMx (M = Si, Al) alloys are promising for use in magnetic refrigeration. However, they require long annealing time (30 days) in order to optimize the magnetocaloric properties. Research has shown that the addition of extra La in off-stoichiometric alloys can greatly shorten the annealing time. Therefore, the purpose of this study is to investigate the influence of the extra addition of La on the annealing properties of a new off-stoichiometric La1.7Fe11.6Al1.4-xSix (x = 0, 0.1, 0.4) alloys. It was demonstrated that after a 36h annealing time, a large volume fraction of 1:13 magnetocaloric phase was obtained for all alloys. Further microstructural analysis of the off-stoichiometric La1.7Fe11.6Al1.4-xSix alloys revealed a facet-like grain morphology. The La1.7Fe11.6Al1.4 and La1.7Fe11.6Al1Si0.4 alloys were shown to contain large 1:13 phase precipitates separated in a La-rich matrix, while the La1.7Fe11.6Al1.3Si0.1 alloy had a continuous 1:13 phase matrix with a fine dispersion of La-rich precipitates throughout. When the magnetic field varied between 0 and 2 T, the corresponding magnetic entropy change and relative cooling capacity for the La1.7Fe11.6Al1.3Si0.1 specimen were determined as 4.58 J/kg K and 173.6 J/kg, respectively. More importantly, the La1.7Fe11.6Al1.3Si0.1 alloy displayed only a slight volume change when the meta-magnetic phase transition occurred, which is promising for cyclic use.  相似文献   

14.
The phase stability, magnetic properties, martensitic transformation, and electronic properties of the Ni2−xMn1+x+ySn1−y system with excess Mn have been systematically investigated by the first-principles calculations. Results indicate that the excess Mn atoms will directly occupy the sublattices of Ni (MnNi) or Sn (MnSn). The formation energy (Ef) of the austenite has a relationship with the Mn content: Ef = 135.27(1 + x + y) − 293.01, that is, the phase stability of the austenite decreases gradually with the increase in Mn content. According to the results of the formation energy of austenite, there is an antiparallel arrangement of the magnetic moment between the excess and normal Mn atoms in the Ni2−xMn1+x+ySn1−y (x = 0 or y = 0) system, while the magnetic moment direction of the normal Mn atoms arranges antiparallel to that of MnNi atoms and parallel to that of MnSn atoms in the Ni2−xMn1+x+ySn1−y (x, y ≠ 0) system. The martensitic transformation occurs in some Ni2−xMn1+x+ySn1−y (x, y ≠ 0) alloys with large magnetic moments of ferrimagnetic austenite. Besides, the valence electrons tend to distribute around the Ni or MnNi atoms and mainly bond with the normal Mn atoms. The results of this work can lay a theoretical foundation for further development of the Ni2−xMn1+x+ySn1−y system as the potential ferromagnetic shape memory alloys.  相似文献   

15.
Non-equilibrium phases formed in melt-quenched Cu In(SexTe1-x)2system, where x = 0.1, 0.2, 0.4, 0.5, 0.6,0.8 and 0.9, have been studied using Rietveld refinement of the crystal structure and Raman spectroscopy. Results of structure refinement have showed that all the samples, except the Cu In(Se0.1Te0.9)2, are heterogeneous. All the observed non-equilibrium phases are quaternary system and are found to have chalcopyrite structure(I"42d), in accordance with the Cu In Te2–Cu In Se2 phase diagram. The lattice constants deduced from the refinement have showed linear variation with Se content. A detailed analysis of the characteristic A1 modes present in the Raman spectrum of individual sample has corroborated the results obtained from the structure analysis. The position of A1 mode of individual phase is found to vary linearly with Se content, which suggests that Cu In(SexTe1-x)2system exhibits single-mode behaviour.  相似文献   

16.
The all-d-metal Ni-Mn-Ti Heusler alloy has giant elastocaloric effect and excellent mechanical properties, which is different from the conventional Ni-Mn-based Heusler alloys. In this work, the preferred site occupation, phase stability, martensitic transformation, magnetic properties, and electronic structure of the B-doped Ni2Mn1.5Ti0.5 alloys are systematically investigated by the first-principles calculations. The results show that B atoms preferentially occupy the octahedral interstitial. The doped B atoms tend to exist in the (Ni2Mn1.5Ti0.5)1-xBx (x = 0.03, 0.06, 0.09) alloy in the form of aggregation distribution, and the martensitic transformation temperature decreases with the increase in the B content. For octahedral interstitial doping, the toughness and plasticity of the (Ni2Mn1.5Ti0.5)1-xBx alloys decrease, but the strength and rigidity are greatly enhanced. This is because a small part of the d-d hybridization in ternary Ni-Mn-Ti alloy is replaced by the p-d hybridization in Ni-Mn-Ti-B alloy.  相似文献   

17.
The emergence of eutectic high-entropy alloys(EHEAs) offers new insights into the design of next generation structural alloys,which is due to their stable dual-phase microstructure and outstanding mechanical properties from room to elevated temperatures.In this work,a series of(CoFe_2 NiV_(0.5)Mo_(0.2))_(100-x)Nb_x(0≤x ≤12) EHEAs were designed and prepared via vacuum arc-melting.Typical eutectic microstructure composing lamellar face-centered cubic solid solution phase and C14 Laves phase appears in the as-cast EHEA when x=9.The microstructure turns to hypoeutectic or hypereutectic when x is below or beyond that critical value accordingly.The volume fraction of the hard Laves phase is proportional to the Nb addition,leading to the strength increment yet at the expense of ductility at room temperature.In particular,the EHEA having4 at% Nb shows a compressive strength of 2.1 GPa with an elongation to fracture of 45%,while EHEAs containing 9 and10 at% Nb exhibit ultrahigh yield strengths of over 1.4 GPa.The effect of Nb addition on the corrosion resistance of this Crfree EHEA system was also studied.The EHEA containing 9 at% Nb has the best anti-corrosion performance in the 3.5 wt%NaCl solution at 298±1 K,indicating a good combination of mechanical and corrosion properties.  相似文献   

18.
The effect of γ-phase on two-way shape memory effect(TWSME) of polycrystalline Ni_(56)Mn_(25-x)Co_xGa_(18.9)Gd_(0.1) alloys was investigated. The results show that an appropriate amount of ductile γ-phase significantly enhances the TWSME. The largest TWSME of 1.4% without training is observed in Ni_(56)Mn_(21)Co_4Ga_(18.9)Gd_(0.1) alloy, and this value is increased to 2.0% after thermomechanical training. The as-trained TWSME decays over the first five thermal cycles and then reaches a stable value as the number of cycles further increasing. Only the degradation of 0.2% is observed after 100 thermal cycles. The better TWSME and thermal stability are ascribed to the stable extra stress field formed by the plastically deformed γ-phase.  相似文献   

19.
It has been recently pointed out that the compositions of industrial alloys are originated from cluster-plus-glueatom structure units in solid solutions. Specifically for Ni-based superalloys, after properly grouping the alloying elements into Al, Ni-like(■), r-forming Cr-like(■) and c-forming Cr-like(■), the optimal formula for single-crystal superalloys is established [Al–Ni_(12)](Al_1■~_(0:5) ■_(1:5)). The Co substitutions for Ni at the shell sites are conducted on the basis of the first-generation single-crystal superalloy AM3, formulated as [Al–■_(12)Co_x](Al_1Ti_(0.25)Ta_(0.25)Cr_1W_(0.25)Mo_(0.25)), with x = 1.5, 1.75, 2 and 2.5(the corresponding weight percents of Co are 9.43, 11.0, 12.57 and 15.71, respectively). The900 ℃ long-term aging follows the Lifshitz–Slyozov–Wagner theory(LSW theory), and the Co content does not have noticeable influence on the coarsening rate of c0. The microstructure and creep behavior of the four(001) single-crystal alloys are investigated. The creep rupture lifetime is reduced as Co increases. The alloy with the lowest Co(9.43 Co) shows the longest lifetime of about 350 h at 1050 ℃/120 MPa, and all the samples show N-type rafting after creep tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号