首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this research, nanoimprint lithography (NIL) was used for patterning crystalline zinc oxide (ZnO) nanorods on the silicon substrate. To fabricate nano-patterned ZnO nanorods, patterning of an n-octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on SiO2 substrate was prepared by the polymer mask using NI. The ZnO seed layer was selectively coated only on the hydrophilic SiO2 surface, not on the hydrophobic OTS SAMs surface. The substrate patterned with the ZnO seed layer was treated with the oxygen plasma to oxidize the silicon surface. It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface. ZnO photoluminescence spectra showed that ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules. Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices.  相似文献   

2.
The 1D ZnO nanorods (NR's) were grown with Zinc (Zn) ion precursor concentration variation on seed layer glass substrate by the low temperature hydrothermal method and utilized for nitrogen dioxide (NO2) gas sensing application. Zn ion precursor concentration varied as 0.02, 0.03, 0.04, 0.05 and 0.06 M and thin films were characterized for structural, morphological, optical, electrical, surface defect study and gas sensing properties. All the film showed dominant orientation along the (002) direction, the intensity of the peak vary with the length of the nanorods. SEM cross images confirmed that nanorods had vertical alignment perpendicular to the plane of the substrate surface. The PL intensity of oxygen vacancy related defects for prepared samples was found to be linearly proportional to gas sensing phenomena. This result in good agreement with the theoretical postulation that, oxygen vacancies plays the important role for adsorption sites to NO2 molecule. The gas sensing performance was studied as a function of operating temperature, Zn ion precursor concentration variation, and gas concentration. The maximum gas response is 113.32–100 ppm NO2 gas at 150 °C for 0.05 M sample out of all prepared samples. Additionally, ZnO thin film sensor has potential to detect NO2 as low as 5 ppm.  相似文献   

3.
Silicon/zinc oxide (Si/ZnO) core-shell nanowires (NWs) were prepared on a p-type Si(111) substrate using a two-step growth process. First, indium seed-coated Si NWs (In/Si NWs) were synthesized using a plasma-assisted hot-wire chemical vapor deposition technique. This was then followed by the growth of a ZnO nanostructure shell layer using a vapor transport and condensation method. By varying the ZnO growth time from 0.5 to 2 h, different morphologies of ZnO nanostructures, such as ZnO nanoparticles, ZnO shell layer, and ZnO nanorods were grown on the In/Si NWs. The In seeds were believed to act as centers to attract the ZnO molecule vapors, further inducing the lateral growth of ZnO nanorods from the Si/ZnO core-shell NWs via a vapor-liquid-solid mechanism. The ZnO nanorods had a tendency to grow in the direction of [0001] as indicated by X-ray diffraction and high resolution transmission electron microscopy analyses. We showed that the Si/ZnO core-shell NWs exhibit a broad visible emission ranging from 400 to 750 nm due to the combination of emissions from oxygen vacancies in ZnO and In2O3 structures and nanocrystallite Si on the Si NWs. The hierarchical growth of straight ZnO nanorods on the core-shell NWs eventually reduced the defect (green) emission and enhanced the near band edge (ultraviolet) emission of the ZnO.  相似文献   

4.
A method for the patterned growth of ZnO nanorods with better field emission properties is presented that combines nanoimprinting, electroplated Zn seeds and aqueous solution growth of ZnO. A patterned Zn layer over large area was prepared using the poly(dimethylsiloxane) (PDMS) template to pattern PMMA masking layer without residual layer. ZnO nanorods were selectively deposited on the Zn seeds instead of growing on the bare ITO regions due to the preferred growth on Zn seeds/ITO substrate. The diameter of ZnO nanorods was decided by the concentration of reactants of zinc nitrate and hexamethyltetramine (C6H12N4) (0.025–0.1 M) at low temperature. This approach provides the capability of creating patterned 1D ZnO micro/nanopatterns at low temperature, ambient condition, and low cost with large area on flexible devices.  相似文献   

5.
Cu-doped ZnO nanorods have been grown at 90°C for 90 min onto a quartz substrate pre-coated with a ZnO seed layer using a hydrothermal method. The influence of copper (Cu) precursor and concentration on the structural, morphological, and optical properties of ZnO nanorods was investigated. X-ray diffraction analysis revealed that the nanorods grown are highly crystalline with a hexagonal wurtzite crystal structure grown along the c-axis. The lattice strain is found to be compressive for all samples, where a minimum compressive strain of −0.114% was obtained when 1 at.% Cu was added from Cu(NO3)2. Scanning electron microscopy was used to investigate morphologies and the diameters of the grown nanorods. The morphological properties of the Cu-doped ZnO nanorods were influenced significantly by the presence of Cu impurities. Near-band edge (NBE) and a broad blue-green emission bands at around 378 and 545 nm, respectively, were observed in the photoluminescence spectra for all samples. The transmittance characteristics showed a slight increase in the visible range, where the total transmittance increased from approximately 80% for the nanorods doped with Cu(CH3COO)2 to approximately 90% for the nanorods that were doped with Cu(NO3)2.  相似文献   

6.
The growth of Al:ZnO nanorods on a silicon substrate using a low-temperature thermal evaporation method is reported. The samples were fabricated within a horizontal quartz tube under controlled supply of O2 gas where Zn and Al powders were previously mixed and heated at 700°C. This allows the reactant vapors to deposit onto the substrate placed vertically above the source materials. Both the undoped and doped samples were characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) measurements. It was observed that randomly oriented nanowires were formed with varying nanostructures as the dopant concentrations were increased from 0.6 at.% to 11.3 at.% with the appearance of ‘pencil-like’ shape at 2.4 at.%, measuring between 260 to 350 nm and 720 nm in diameter and length, respectively. The HRTEM images revealed nanorods fringes of 0.46 nm wide, an equivalent to the lattice constant of ZnO and correspond to the (0001) fringes with regard to the growth direction. The as-prepared Al:ZnO samples exhibited a strong UV emission band located at approximately 389 nm (E g  = 3.19 eV) with multiple other low intensity peaks appeared at wavelengths greater than 400 nm contributed by oxygen vacancies. The results showed the importance of Al doping that played an important role on the morphology and optical properties of ZnO nanostructures. This may led to potential nanodevices in sensor and biological applications.  相似文献   

7.
The magnetism sources and magnetic mechanism of Li doping and point defect, which coexist in the presence of hexagonal wurtzite ZnO, are controversial. To solve these problems, the effects of Li doping and point defect on the magnetism of ZnO were studied using geometry optimization and energy calculation based on the first-principle generalized gradient approximation + U (GGA + U) method of density functional theory. Results showed that the coexistence of Li doping and Zn vacancy can achieve ferromagnetic long-range order, and the Curie temperature of the doping system can achieve room temperature. In addition, results showed that magnetic moments are significantly different when the structures of the systems are also different with the same doping amount and doping method, which are advantageous for the enhancement of the magnetic properties of dilute magnetic semiconductors. The magnetism source of Zn14LiO16 is the hybrid coupling electron exchange effect between O-2p and Zn-3d orbits. With the coexistence of Li replacing Zn and Zn vacancy, the closest relative distance between doping and vacancy leads to the lowest formation energy and highest stability. In the condition of the highest stability of the ground state, all the doping systems of Li replacing Zn and O vacancy, doping system of interstitial Li and Zn vacancy, and doping system with the coexistence of Li replacing Zn, interstitial Li, and Zn vacancy are non-magnetic, which are considered worthless in the design and preparation of diluted magnetic semiconductors (DMSs).  相似文献   

8.
包小波  袁爱华 《当代化工》2009,38(6):575-578
以Zn(acac)2·H2O为单源前驱体,用水热法成功地制备了纳米ZnO,利用X-射线衍射、扫描电子显微镜、透射电子显微镜等手段对样品进行了表征。对自制的纳米ZnO进行了光催化活性研究,结果表明:纳米ZnO对200~380nm波长范围的光和在可见光范围内都有较强的吸收作用。利用纳米ZnO作为光催化剂对有机染料溶液进行了降解实验,发现在太阳光照射3h后,对酸性红B的降解率可达到100%。  相似文献   

9.
《Ceramics International》2016,42(11):13151-13160
In this work, we employed an impurity-free nanoparticle synthesis technique, known as pulsed laser ablation in liquid (PLAL), to integrate titanium dioxide nanoparticles (TiO2 NPs) into zinc oxide nanorods (ZnO NRs) with varying relative proportions. The main objective of this integration was to enhance the charge carrier separation of photo-generated electron hole pairs during solar irradiation. For the synthesis process, an Nd:YAG laser at 532 nm wavelength was applied as an ablation source, along with deionized water as a solvent medium in which the precursor materials were dispersed prior to laser irradiation. The nanocomposites were characterized by X-ray diffraction (XRD), UV–vis absorption and in-situ Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM) and field emission scanning electron microscopy (FE-SEM). The synthesized nanocomposites were primarily utilised in two applications: firstly, as a catalyst in the degradation of methyl orange (MO) and secondly, as photo-anode in dye sensitized solar cell (DSSC). Our research has demonstrated that optimal performance was obtained for the nanocomposite containing 10% and 90% (by weight) TiO2 NPs and ZnO respectively, which we define as the ideal nanocomposite. Relative to pure ZnO, the photo-conversion efficiency of the ideal composite was improved substantially by 63.73%, whilst the photo-degradation rate was enhanced by 3 fold. The oxidation state and the microstructural of the segregated ideal nanocomposite confirms that oxygen vacancy defects were created when perfect surface integration occurs between TiO2 and ZnO. Nonetheless, we believe that the performance enhancement is predominantly due to the excellent charge carrier separation and fast interfacial electron flow in this nanocomposite.  相似文献   

10.
We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleation surface as well as the film with better electrical conductivity, thus leading to a more uniform high-density ZnO NRAs with an improved crystal quality during the electrochemical deposition process. For ZnO NRAs grown on the seed layer containing MWCNTs (2 wt.%), the photoluminescence peak intensity of the near-band-edge emission at a wavelength of approximately 375 nm was enhanced by 2.8 times compared with that of the ZnO nanorods grown without the seed layer due to the high crystallinity of ZnO NRAs and the surface plasmon-meditated emission enhancement by MWCNTs. The effect of the MWCNT-composed seed layer on the surface wettability was also investigated.  相似文献   

11.
In this study, controllable ZnO nanorod arrays were successfully synthesized on Si substrate at room temperature (approx. 25°C). The formation of controllable ZnO nanorod arrays has been investigated using growth media with different concentrations and molar ratios of Zn(NO3)2 to NaOH. Under such a nonequilibrium growth condition, the density and dimension of ZnO nanorod arrays were successfully adjusted through controlling the supersaturation degree, i.e., volume of growth medium. It was found that the wettability and electrowetting behaviors of ZnO nanorod arrays could be tuned through variations of nanorods density and length. Moreover, its field emission property was also optimized by changing the nanorods density and dimension.  相似文献   

12.
In this report, we illustrate a simple, easy, and low-temperature growth of Ag/Ag2O3/ZnO composite nanorods with high purity and crystallinity. The composite nanorods were structurally characterized by field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy which confirmed that synthesized product have rod-like morphology having an average cross section of approximately 300 nm. Nanorods are made of silver, silver oxide, and zinc oxide and are optically active having absorption band at 375 nm. The composite nanorods exhibited high sensitivity (1.5823 μA.cm−2.mM−1) and lower limit of detection (0.5 μM) when applied for the recognition of phenyl hydrazine utilizing I-V technique. Thus, Ag/Ag2O3/ZnO composite nanorods can be utilized as a redox mediator for the development of highly proficient phenyl hydrazine sensor.  相似文献   

13.
Polyimide (PI) films containing dispersed ZnO nanoparticles were prepared from both zinc nitrate hexahydrate (designated as Zn(NO3)2/PI) and ZnO nanoparticles, 2‐nm average primary size (ZnO/PI). This work shows how the origin of ZnO affects both the photoluminescence and thermal decomposition of the film. The presence of ZnO derived from Zn(NO3)2·6H2O was confirmed by X‐ray diffraction technique. The fluorescent intensities from Zn(NO3)2/PI and ZnO/PI were much higher than that from pure PI films. When the ZnO concentration exceeded a certain saturation level, the emission intensity decreased due to the undesirable aggregation of ZnO. At the same concentration, ZnO/PI exhibited higher emission intensity than Zn(NO3)2/PI. All samples prepared under nitrogen emitted higher intensity than their counterparts prepared under argon. The ZnO/PI film was thermally more stable than the Zn(NO3)2/PI one. From TEM images of 117.6 mol% ZnO/PI films, the ZnO aggregates, whose average size was 17–90 nm, were well distributed throughout the film but poorly dispersed in nanometer range. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Color-tunable photoluminescence has been realized by constructing Bi3.6Eu0.4Ti3O12/ZnO (BEuT/ZnO) nanorods composite films. The composite films were prepared by a hybrid chemical solution method. Effects of ZnO nanorods on photoluminescence of BEuT were studied. On one hand, the near-band-edge ultraviolet emission of ZnO nanorods can greatly improve the red emission of Eu3+ ions in BEuT, and on the other hand, ZnO nanorods can also produce a strong green deep-energy-level luminescence. Our study demonstrates that the color of photoluminescence in the composite films can be tuned from green to yellow to red, through suitable control of ZnO nanorods. The BEuT/ZnO nanorods composite films with the color-tunable photoluminescence may have potential applications for white light emission and other integrated optoelectronic devices.  相似文献   

15.
The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm2 and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm2 exhibited the highest density of 1.45 × 109 cm-2. X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, IUV/IVIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm2 showed high IUV/IVIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.  相似文献   

16.
In this work, ZnO nanorod arrays were grown on glass substrate by the wet chemical method, and the effect of synthesis temperature on the properties was investigated. The grown nanorods were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman and Photoluminescence (PL) measurements. XRD pattern showed that nanorod prepared at 80 °C and 90 °C has high crystallinity with wurtzite structure and orientated along the c-axis. However, nanorods were not formed at 60 °C and 70 °C due to less energy supply for the growth of the ZnO. FE-SEM results showed that the morphology and the size of ZnO can be effectively controlled. In particular, as the temperature increased, diameter of the nanorod was increased while length decreased. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2high mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. Room-temperature PL spectra of the ZnO nanorods revealed a near-band-edge (NBE) emission peak. The NBE (UV light emission) band at ~383 nm might be attributed to the recombination of free exciton. The narrow full-width at half-maximum (FWHM) of the UV emission indicated that ZnO nanorods had high crystallinity.  相似文献   

17.
Hexagonal prism ZnO nanorods were successfully grown on Zn substrates by the 120 °C and 24 h hydrothermal reaction of the solutions with pH of 9–12. Results from XRD, SEM, TEM, SAED and HRTEM showed that the as-synthesized products were wurtzite ZnO with the shape of hexagonal prism nanorods grown along the [0 0 1] direction with smooth prismatic side planes. The PL spectra showed strong emission band at 543 nm in the green-yellow region due to the recombination of electrons trapped in singly ionized oxygen vacancies and photoexcited holes. This facile, reproducible and effective low-cost approach is promising for the future large-scale synthesis of wurtzite ZnO nanostructures for different applications in nanotechnology.  相似文献   

18.
n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes (LEDs) have been fabricated using low-temperature electrochemical method. The I-V characteristics of the heterojunction LEDs show obvious rectifying behavior. The typical room-temperature electroluminescence spectra obtained from this heterostructure device under forward bias exhibit a strong visible emission across the spectral region from 350 to 600 nm centered at 530 nm. The intensity of the visible emission rises more quickly than that of the ultraviolet emission with the increasing bias. Photocurrent and Raman spectra reveal that the growth process of CuSCN can induce more surface states and defects in the ZnO nanorods, which confirms the enhancement of visible emission from the ZnO nanorods/p-CuSCN heterostructure. Compared with the ZnO-only LEDs, a p-type CuSCN layer used as a hole-transporting material can balance the electrons and holes injection rates in the heterojunction LEDs. The processing procedure in this work is a low-cost, low-temperature and convenient way to fabricate ZnO-based heterojunction light-emitting diodes.  相似文献   

19.
At room temperature, we observe the self assembly of nanoclusters in an amorphous matrix using a vacuum deposition technique. Self-assembled ZnO nanoclusters embedded in hard diamond-like amorphous carbon thin films, deposited by high vacuum Filtered Cathodic Vacuum Arc (FCVA) technique at room temperature without post-processing, have been observed. A selective self assembly of metal and oxygen ions in a 3-element plasma was observed. XPS distinctly showed presence of ZnO and DLC-mixture in 5, 7 and 10 at.% Zn (in target) films while maintaining high sp3 content. This in turn improved the Young's modulus value of the ZnO nanoclusters embedded in DLC film (~ 220 GPa) compared to bulk ZnO (~ 110 GPa). Films with ZnO detected were observed to exhibit absorption edge at 377 nm monochromatic UV light emissions. This corresponded to a band gap value of about 3.30 eV. The emission with greatest intensity (after normalization) was detected from 10 at.% Zn (in target) film where presence of ZnO nanoclusters (~ 40 nm) in DLC matrix were confirmed by TEM. This showed that well-defined crystalline ZnO nanoclusters contributed to strong PL signal. Strong monochromatic emissions detected hinted that no defect states were present.  相似文献   

20.
In the present work, the effects of two different morphologies of zinc oxide nanoparticles (nanosheets and nanorods) were investigated by in-situ measurement of deposition weight, and current density. ZnO nanosheets and nanorods were synthesized by microwave-assisted method using co-surfactant route. The average thickness of obtained nanosheets, and the average diameter of nanorods were measured to be about 26 nm and 139 nm, respectively. ZnO films were obtained by electrophoretic deposition from suspension of nanoparticles in ethanol under different voltages. Results indicated that ZnO nanosheets tend to have greater deposition rate than ZnO nanorods under similar conditions. The compactness of the film obtained from nanosheet suspension was higher than the one obtained from nanorod suspension. However, the film obtained from ZnO nanorods displayed more uniformity at different voltages in comparison to the film obtained from ZnO nanosheets, which can be due to different active surface area, and also different way of motion under hydrodynamic forces in the suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号