首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Indirect focusing of the output from a pulsed infrared Nd3+:YAG laser through a shock‐generating layer onto organic crystals results in the emission of an intense microsecond duration pulse of mechanoluminescence (ML). The ML appears after a threshold laser fluence has been reached and increases sharply above this threshold. This specifies that there is a corresponding amplitude of a laser‐induced shock wave that is necessary to induce crystal fracturing. Thus, the intensity of ML can be controlled by varying the laser fluence. Piezoelectric charges produced on the surfaces of a fractured crystal create the foundation for luminescence. Initially, the ML intensity increases with the shock wave pressure and time due to the creation of more surfaces in the crystal; the ML intensity reaches a peak value and then decreases over time. Thus, laser shock wave‐induced ML provides a new optical technique for the study of materials under high pressure. Expressions explored for the characteristics of laser shock wave‐induced ML satisfactorily explain the experimental results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Reports of behavioral and clinical changes following weak microwave irradiation, though not fully documented, are of sufficient moment to require examination of each possible biological consequence of low level exposure, particularly with respect to the central nervous system. In this report the hypothesis that significant cytological microthermal effects are induced by low intensity microwave fields (10 mW/cm2 incident power density) is examined. An estimate of the upper bound on the thermal effects thus produced is made, showing the thermal variations to be no larger than those endogenous to neural tissue. A similar analysis of microthermal effects within the vestibulo-cochlear apparatus, however, suggests the more limited hypothesis that this structure is responsive to weak, absorbed microwave energy. An estimate of the temperature gradients, hence, local fluid density changes within the labyrinth supports the existence of detectable intralabyrinthine convective forces at incident power densities as low as 15–20 mW/cm2. This suggests (i) that microwave induced vestibular effects may provide a cue to alert personnel to significant acute microwave exposure, (ii) that reports of behavioral and/or clinical reactivity to low level microwave exposure may derive from such a benign but potentially useful interaction and (iii) that geometric peculiarities of the vestibulo-cochlear apparatus may result in markedly enhanced microwave-labyrinthine coupling at particular radiation wavelengths.  相似文献   

3.
4.
Chemiluminescence (CL) from luminol solution and luminol–TiO2 suspension after illumination of a 355 nm pulse laser is compared. Both the CL systems showed the CL spectra with maximum wavelength of 430 nm, suggesting that the emission was from the excite state of 3‐aminophthalate ion. The TiO2 photocatalytically induced luminol CL could be separately detected either when the pulse laser power was smaller than 0.15 mJ/pulse or a slit was placed beyond ?2–2 mm in the vertical direction of the laser beam. The TiO2 photocatalytically induced luminol CL intensity was linear to the laser power, while that of the 355 nm pulse laser‐induced was nonlinear. A log–log plot between the 355 nm pulse laser‐induced luminol CL intensity and laser power showed a near‐linear regression fit with a slope of 2.11, suggesting that a two‐photon absorption process of luminol was present in the 355 nm pulse laser‐induced luminol CL. Adsorbed oxygen on the surface of TiO2 seemed to greatly contribute to the photocatalytically induced CL. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The temperature and mass dependence of lyoluminescence intensity of γ‐irradiated colored potassium chloride powder have been studied using a photomultiplier tube connected to an x–y recorder. The peak lyoluminescence intensity increases with increasing amount of solute added up to 50 mg and then tends to saturate. The lyoluminescence (LL) glow curves with mass of KCl microcrystals show that initially the LL intensity increases with time and then decreases exponentially with time. The decay time consists of two components for all the masses. The dependence of decay time, especially the longer component on mass, has been investigated. The temperature dependence of LL intensity shows that initially the peak LL intensity increases with temperature up to 60°C, and then decreases with further increase in temperature. The decay time tends to decrease with increasing temperature. An explanation for the experimental results has been attempted. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Human exposure to millimeter wave (MMW) radiation is expected to increase in the next several years. In this work, we present a thermal model of the human eye under MMW illumination. The model takes into account the fluid dynamics of the aqueous humor and predicts a frequency‐dependent reversal of its flow that also depends on the incident power density. The calculated maximum fluid velocity in the anterior chamber and the temperature rise at the corneal apex are reported for frequencies from 40 to 100 GHz and different values of incident power density. Bioelectromagnetics 34:291–299, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
为探讨NO对He-Ne激光和增强UV-B辐射小麦(Triticum aestivuml)气孔运动的作用机理,采用低剂量(5 mW.mm-2)He-Ne激光和增强(10.08 kJ.m-2.d-1)UV-B辐射并结合药理学实验和激光共聚焦显微技术,对ML7113小麦的叶片及表皮条进行不同的处理,结果显示:(1)UV-B辐射既可诱导小麦叶片气孔关闭,又能够明显增加气孔保卫细胞和叶片的NO水平,且NO清除剂明显抑制了UV-B辐射诱导的小麦叶片气孔关闭,同时气孔保卫细胞和叶片内的NO含量明显减少。(2)一氧化氮合酶(NOS)抑制剂L-NAME对经UV-B辐射诱导的小麦幼苗气孔开度及保卫细胞和叶片内NO含量的抑制程度明显大于硝酸还原酶(NR)抑制剂NaN3对其的抑制程度,说明一氧化氮合酶(NOS)合成途径是小麦叶片经UV-B辐射后NO的主要产生途径。(3)就气孔开度而言,L〉CK〉BL〉B。就小麦叶片及保卫细胞内NO含量而言,B〉BL〉CK〉L。就硝酸还原酶(NR)和一氧化氮合酶(NOS)的活性而言,B组NR活性最低,NOS活性最高,L组NR活性最高,NOS活性最低。表明经He-Ne激光和增强UV-B辐射诱导的小麦气孔开度的变化确实与保卫细胞及叶片中NO含量的多少有关,气孔开度的减小及增大对应于NO含量的增多或减少,同时进一步证实了小麦叶片经He-Ne激光单独辐照后,NO的主要合成途径也来源于NOS途径。  相似文献   

8.
The lyoluminescence (LL), thermoluminescence (TL) and mechanoluminescence (ML) of γ‐ray‐irradiated coloured powder of KCl:Dy (0.05–0.5 mol%) phosphors are reported in this paper. To understand the mechanism of LL and ML, the LL and ML spectra are compared with TL studies. The variation of intensity of respective luminescence with different γ‐ray doses and with different concentrations of Dy3+ ion doped in KCl is found to be similar in nature. The intensities differ from each other, but their nature is found to be similar with γ‐ray exposures. The ML glow peak intensity is linear up to high 1 kGy exposure as compared to LL (up to 0.5 kGy) and TL (up to 0.75 kGy) techniques. Therefore, according to our results, the recommendation is that KCl:Dy (0.1 mol%) phosphor prepared by wet chemical technique is useful for high‐dose measurements using the ML technique for accidental radiation dosimetry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Moderate heating of collagenous tissues such as cartilage and cornea by infrared laser irradiation can produce biologically nondestructive structural rearrangements and relaxation of internal stresses resulting in the tissue reshaping. The reshaping results and eventual changes in optical and biological properties of the tissue strongly depend on the laser‐irradiation regime. Here, a speckle‐contrast technique based on monochromatic illumination of the tissue in combination with strain mapping by means of optical coherence elastography (OCE) is applied to reveal the interplay between the temperature and thermal stress fields producing tissue modifications. The speckle‐based technique ensured en face visualization of cross correlation and contrast of speckle images, with evolving proportions between contributions of temperature increase and thermal‐stresses determined by temperature gradients. The speckle‐technique findings are corroborated by quantitative OCE‐based depth‐resolved imaging of irradiation‐induced strain‐evolution. The revealed relationships can be used for real‐time control of the reshaping procedures (e.g., for laser shaping of cartilaginous implants in otolaryngology and maxillofacial surgery) and optimization of the laser‐irradiation regimes to ensure the desired reshaping using lower and biologically safer temperatures. The figure of waterfall OCE‐image demonstrates how the strain‐rate maximum arising in the heating‐beam center gradually splits and drifts towards the zones of maximal thermal stresses located at the temperature‐profile slopes.  相似文献   

10.
A new method for thermal energy harvesting at small temperature difference and high cycling frequency is presented that exploits the unique magnetic properties and actuation capability of magnetic shape memory alloy (MSMA) films. Polycrystalline films of the Ni50.4Co3.7Mn32.8In13.1 alloy are tailored, showing a large abrupt change of magnetization and low thermal hysteresis well above room temperature. Based on this material, a free‐standing film device is designed that exhibits thermomagnetically induced actuation between a heat source and sink with short heat transfer times. The cycling frequency of the device is tuned by mechanical frequency up‐conversion to over 200 Hz. An integrated pick‐up coil converts the thermally induced change of magnetization as well as the kinetic energy to electricity. For a temperature change of 10 K, the maximum peak power density is in the order of 5 mW cm‐3.  相似文献   

11.
The application of laser in ophthalmology and eye surgery is so widespread that hardly can anyone deny its importance. On the other hand, since the human eye is an organ susceptible to external factors such as heat waves, laser radiation rapidly increases the temperature of the eye and therefore the study of temperature distribution inside the eye under laser irradiation is crucial; but the use of experimental and invasive methods for measuring the temperature inside the eye is typically high-risk and hazardous. In this paper, using the three-dimensional finite element method, the distribution of heat transfer inside the eye under transient condition was studied through three different lasers named Nd:Yag, Nd:Yap and ArF. Considering the metabolic heat and blood perfusion rate in various regions of the eye, numerical solution of space–time dependant Pennes bioheat transfer equation has been applied in this study. Lambert–Beer's law has been used to model the absorption of laser energy inside the eye tissues. It should also be mentioned that the effect of the ambient temperature, tear evaporation rate, laser power and the pupil diameter on the temperature distribution have been studied. Also, temperature distribution inside the eye after applying each laser and temperature variations of six optional regions as functions of time have been investigated. The results show that these radiations cause temperature rise in various regions, which will in turn causes serious damages to the eye tissues. Investigating the temperature distribution inside the eye under the laser irradiation can be a useful tool to study and predict the thermal effects of laser radiation on the human eye and evaluate the risk involved in performing laser surgery.  相似文献   

12.
13.
When II–VI semiconductors are fractured, initially the mechanoluminescence (ML) intensity increases with time, attains a maximum value Im at a time tm, at which the fracture is completed. After tm, the ML intensity decreases with time, Im increase linearly with the impact velocity v0 and IT initially increase linearly with v0 and then it attains a saturation value for a higher value of v0. For photoluminescence, the temperature dependence comes mainly from luminescence efficiency, ηo; however, for the ML excitation, there is an additional factor, rt dependent on temperature. During fracture, charged dislocations moving near the tip of moving cracks produce intense electric field, causes band bending. Consequently, tunneling of electrons from filled electron traps to the conduction band takes place, whereby the radiative electron–hole recombination give rise to the luminescence. In the proposed mechanism, expressions are derived for the rise, the time tm corresponding to the ML intensity versus time curve, the ML intensity Im corresponding to the peak of ML intensity versus time curve, the total fracto‐mechanoluminescence (FML) intensity IT, and fast and slow decay of FML intensity of II–VI semiconductors. The FML plays a significant role in understanding the processes involved in biological detection, earthquake lights and mine failure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Penetration depth of near‐infrared laser radiation to costal cartilage is controlled by the tissue absorption and scattering, and it is the critical parameter to provide the relaxation of mechanical stress throughout the whole thickness of cartilage implant. To enhance the penetration for the laser radiation on 1.56 μm, the optical clearing solutions of glycerol and fructose of various concentrations are tested. The effective and reversible tissue clearance was achieved. However, the increasing absorption of radiation should be concerned: 5°C‐8°C increase of tissue temperature was detected. Laser parameters used for stress relaxation in cartilage should be optimized when applying optical clearing agents. To concentrate the absorption in the superficial tissue layers, magnetite nanoparticle (NP) dispersions with the mean size 95 ± 5 nm and concentration 3.9 ± 1.1 × 1011 particles/mL are applied. The significant increase in the tissue heating rate was observed along with the decrease in its transparency. Using NPs the respective laser power can be decreased, allowing us to obtain the working temperature locally with reduced thermal effect on the surrounding tissue.   相似文献   

15.
Urodele amphibians (newts and salamanders) and anuran amphibians (frogs) are excellent research models to reveal mechanisms of three‐dimensional organ regeneration since they have exceptionally high regenerative capacity among tetrapods. However, the difficulty in manipulating gene expression in cells in a spatially restricted manner has so far hindered elucidation of the molecular mechanisms of organ regeneration in amphibians. Recently, local heat shock by laser irradiation has enabled local gene induction even at the single‐cell level in teleost fishes, nematodes, fruit flies and plants. In this study, local heat shock was made with infrared laser irradiation (IR‐LEGO) by using a gene expression inducible system in transgenic animals containing a heat shock promoter, and gene expression was successfully induced only in the target region of two amphibian species, Xenopus laevis and Pleurodeles waltl (a newt), at postembryonic stages. Furthermore, we induced spatially restricted but wider gene expression in Xenopus laevis tadpoles and froglets by applying local heat shock by a temperature‐controlled metal probe (temperature stimulator). The local gene manipulation systems, the IR‐LEGO and the temperature stimulator, enable us to do a rigorous cell lineage trace with the combination of the Cre‐LoxP system as well as to analyze gene function in a target region or cells with less off‐target effects in the study of amphibian regeneration.  相似文献   

16.
Mathematical approaches made for both the charged dislocation model and piezoelectrically induced electron bombardment model of fracto‐mechanoluminescence (FML), the luminescence induced by fracture of solids, in ZnS:Mn phosphor indicate that the piezoelectrically induced electron bombardment model provides a dominating process for the FML of ZnS phosphors. The concentration of 3000 ppm Mn2+ is optimal for ML intensity of ZnS:Mn phosphor. The decay time of ML gives the relaxation time of the piston used to deform the sample and the time tm of maximum of ML is controlled by both the relaxation time of the piston and decay time of charges on the newly created surfaces of crystals. As the product of the velocity of dislocations and pinning time of dislocations gives the mean free path of a moving dislocation. Both factors play an important role in the ML excitation of impurity doped II–VI semiconductors. The linear increase of total ML intensity IT with the impact velocity indicates that the damage increases linearly with impact velocity of the load. Thus, the ML measurement can be used remotely to monitor the real‐time damage in the structures, and therefore, the ML of ZnS:Mn phosphor has also the potential for a structural health monitoring system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In‐vitro experimental parametric studies of laser ablation using natural sialoliths and artificial stones have been performed toward an efficient laser treatment of sialolithiasis. Surface microstructure and water adsorption become critical for coupling high power pulsed Ho:YAG laser radiation (λ = 2080 nm, τ ~250 μsec), inducing ablative interactions and stone fragmentation. Results reveal a generic trend, with single pulse laser energy density threshold for sialolith ablative erosion at ~200 J cm?2 (corresponding to intensity ~800 kW cm?2) and fragmentation rates reaching ~1 mm/pulse at ~2400 J cm?2. This process shows no saturation, suggesting that very high energy density irradiation at low pulse repetition rate is an efficient approach. Such operation facilitates rapid cooling and minimal thermal loading of the oral and maxillofacial area, thus causing negligible adverse effects. The method is expected to contribute to the establishment of an easy and optimal therapeutic protocol for sialolithiasis pathology.  相似文献   

18.
We investigated the biological effects of Er:YAG laser (2940‐nm; DELight, HOYA ConBio, Fremont, California) irradiation at fluences of 3.6, 4.2, 4.9, 6.3, 8.1 or 9.7 J cm?2 at 20 or 30 Hz for 20 or 30 seconds on primary human gingival fibroblasts (HGFs). Irradiation at 6.3 J cm?2 promoted maximal cell proliferation, determined by WST‐8 assay and crystal violet staining, but was accompanied by lactate dehydrogenase release, on day 3 post‐irradiation. Elevation of ATP level, Ki67 staining, and cyclin‐A2 mRNA expression confirmed that Er:YAG affected the cell cycle and increased the number of proliferating cells. Transmission electron microscopy showed alterations of mitochondria and ribosomal endoplasmic reticulum (ER) at 3 hours post‐irradiation at 6.3 J cm?2, and the changes subsided after 24 hours, suggesting transient cellular injury. Microarray analysis revealed up‐regulation of 21 genes involved in heat‐related biological responses and ER‐associated degradation. The mRNA expression of heat shock protein 70 family was increased, as validated by Real‐time PCR. Surface temperature measurement confirmed that 6.3 J cm?2 generated heat (40.9°C post‐irradiation). Treatment with 40°C‐warmed medium increased proliferation. Laser‐induced proliferation was suppressed by inhibition of thermosensory transient receptor potential channels. Thus, despite causing transient cellular damage, Er:YAG laser irradiation at 6.3 J cm?2 strongly potentiated HGF proliferation via photo‐thermal stress, suggesting potential wound‐healing benefit.   相似文献   

19.
Photobiomodulation (PBM) is a non‐plant‐cell manipulation through a transfer of energy by means of light sources at the non‐ablative or thermal intensity. Authors showed that cytochrome‐c‐oxidase (complex IV) is the specific chromophore's target of PBM at the red (600‐700 nm) and NIR (760‐900 nm) wavelength regions. Recently, it was suggested that the infrared region of the spectrum could influence other chromospheres, despite the interaction by wavelengths higher than 900 nm with mitochondrial chromophores was not clearly demonstrated. We characterized the interaction between mitochondria respiratory chain, malate dehydrogenase, a key enzyme of Krebs cycle, and 3‐hydroxyacyl‐CoA dehydrogenase, an enzyme involved in the β‐oxidation (two mitochondrial matrix enzymes) with the 1064 nm Nd:YAG (100mps and 10 Hz frequency mode) irradiated at the average power density of 0.50, 0.75, 1.00, 1.25 and 1.50 W/cm2 to generate the respective fluences of 30, 45, 60, 75 and 90 J/cm2. Our results show the effect of laser light on the transmembrane mitochondrial complexes I, III, IV and V (adenosine triphosphate synthase) (window effects), but not on the extrinsic mitochondrial membrane complex II and mitochondria matrix enzymes. The effect is not due to macroscopical thermal change. An interaction of this wavelength with the Fe‐S proteins and Cu‐centers of respiratory complexes and with the water molecules could be supposed.   相似文献   

20.
Zinc oxide (ZnO) and ZnO:Cu nanoparticles (NPs) were synthesized using a rapid, controllable, one‐pot and room‐temperature pulsed UV‐laser assisted method. UV‐laser irradiation was used as an effective energy source in order to gain better control over the NPs size and morphology in aqueous media. Parameters effective in laser assisted synthesis of NPs such as irradiation time and laser shot repetition rate were optimized. Photoluminescence (PL) spectra of ZnO NPs showed a broad emission with two trap state peaks located at 442 and 485 nm related to electronic transition from zinc interstitial level (IZn) to zinc vacancy level (VZn) and electronic transition from conduction band to the oxygen vacancy level (VO), respectively. For ZnO:Cu NPs, trap state emissions disappeared completely and a copper (Cu)‐related emission appeared. PL intensity of Cu‐related emission increased with the increase in concentration of Cu2+, so that for molar ratio of Cu:Zn 2%, optimal value of PL intensity was obtained. The photocatalytic activity of Cu‐doped ZnO revealed 50 and 100% increasement than that of undoped NPs under UV and visible irradiation, respectively. The enhanced photocatalytic activity could be attributed to smaller crystal size, as well as creation of impurity acceptor levels (T2) inside the ZnO energy band gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号