首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Lovastatin, an inhibitor of cellular cholesterol synthesis, has an apparent anti-cancer property, but the detailed mechanisms of its anti-cancer effects remain poorly understood. We investigated the molecular mechanism of Lovastatin anti-tumor function through the study of its effect on membrane ion flow, gap junctional intercellular communication (GJIC), and the pathways of related signals in MCF-7 mammary cancer cells. After treatment for 24–72 h with 4, 8 or 16 μmol/L Lovastatin, cellular proliferation was examined via the MTT assay, and changes in membrane potential and cellular [Ca2+]i were monitored using confocal laser microscopy. In addition, the expression of plasma membrane calcium ATPase isoform 1 (PMCA1) mRNA was analyzed via RT-PCR, the GJIC function was examined using the scrape-loading dye transfer (SLDT) technique, and MAPK phosphorylation levels were tested with the kinase activity assay. The results showed that Lovastatin treatment significantly inhibited the growth of MCF-7 breast cancer cells. It also increased the negative value of the membrane potential, leading to the hyperpolarization of cells. Moreover, Lovastatin treatment continuously enhanced [Ca2+]i, although the levels of PMCA1 mRNA were unchanged. GJIC was also upregulated in MCF-7 cells, with transfer of LY Fluorescence reaching 4 to 5 rows of cells from the scraped line after treatment with 16 μmol/L Lovastatin for 72 h. Finally, downregulation of ERK1 and p38MAPK phosphorylation were found in Lovastatin-treated MCF-7 cells. It could be deduced that Lovastatin can induce changes in cellular hyperpolarization and intracellular Ca2+ distributions, and increase GJIC function. These effects may result in changes in the downstream signal cascade, inhibiting the growth of MCF-7 cells.  相似文献   

2.
Purinergic signalling in rat GFSHR-17 granulosa cells was characterised by Ca2+-imaging and perforated patch-clamp. We observed a resting intracellular Ca2+-concentration ([Ca2+]i) of 100 nM and a membrane potential of −40 mV. This was consistent with high K+− and Cl permeability and a high intracellular Cl concentration of 40 mM. Application of ATP for 5–15 s every 3 min induced repeated [Ca2+]i increases and a 30 mV hyperpolarization. The phospholipase C inhibitor U73122 or the IP3-receptor antagonist 2-aminoethoethyl diphenyl borate suppressed ATP responses. Further biochemical and pharmacological experiments revealed that ATP responses were related to stimulation of P2Y2 and P2Y4 receptors and that the [Ca2+]i increase was a prerequisite for hyperpolarization. Inhibitors of Ca2+-activated channels or K+ channels did not affect the ATP-evoked responses. Conversely, inhibitors of Cl channels hyperpolarized cells to −70 mV and suppressed further ATP-evoked hyperpolarization. We propose that P2Y2 and P2Y4 receptors in granulosa cells modulate Cl permeability by regulating Ca2+-release.  相似文献   

3.
BackgroundDisorders of mitochondrial Ca2+ homeostasis play a key role in the glutamate excitotoxicity of brain neurons. DS16570511 (DS) is a new penetrating inhibitor of mitochondrial Ca2+ uniporter complex (MCUC). The paper examines the effects of DS on the cultivated cortical neurons and isolated mitochondria of the rat brain.MethodsThe functions of neurons and mitochondria were examined using fluorescence microscopy, XF24 microplate-based сell respirometry, ion-selective microelectrodes, spectrophotometry, and polarographic technique.ResultsAt the doses of 30 and 45 μM, DS reliably slowed down the onset of glutamate-induced delayed calcium deregulation of neurons and suppressed their death. 30 μM DS caused hyperpolarization of mitochondria of resting neurons, and 45 μM DS temporarily depolarized neuronal mitochondria. It was also demonstrated that 30–60 μM DS stimulated cellular respiration. DS was shown to suppress Ca2+ uptake by isolated brain mitochondria. In addition, DS inhibited ADP-stimulated mitochondrial respiration and ADP-induced decrease in the mitochondrial membrane potential. It was found that DS inhibited the activity of complex II of the respiratory chain. In the presence of Ca2+, high DS concentrations caused a collapse of the mitochondrial membrane potential.ConclusionsThe data obtained indicate that, in addition to the inhibition of MCUC, DS affects the main energy-transducing functions of mitochondria.General significanceThe using DS as a tool for studying MCUC and its functional role in neuronal cells should be done with care, bearing in mind multiple effects of DS, a proper evaluation of which would require multivariate analysis.  相似文献   

4.
Formylated peptides are chemotactic agents generated by pathogens. The most relevant peptide is fMLF (formyl-Met-Leu-Phe) which participates in several immune functions, such as chemotaxis, phagocytosis, cytokine release and generation of reactive oxygen species. In macrophages fMLF-dependent responses are dependent on both, an increase in intracellular calcium concentration and on a hyperpolarization of the membrane potential. However, the molecular entity underlying this hyperpolarization remains unknown and it is not clear whether changes in membrane potential are linked to the increase in intracellular Ca2+. In this study, differentiated U937 cells, as a macrophage-like cell model, was used to characterize the fMLF response using electrophysiological and Ca2+ imaging techniques. We demonstrate by means of pharmacological and molecular biology tools that fMLF induces a Ca2+-dependent hyperpolarization via activation of the K+ channel KCa3.1 and thus, enhancing fMLF-induced intracellular Ca2+ increase through an amplification of the driving force for Ca2+ entry. Consequently, enhanced Ca2+ influx would in turn lengthen the hyperpolarization, operating as a positive feedback mechanism for fMLF-induced Ca2+ signaling.  相似文献   

5.
Electroporation, in particular with nanosecond pulses, is an efficient technique to generate nanometer-size membrane lesions without the use of toxins or other chemicals. The restoration of the membrane integrity takes minutes and is only partially dependent on [Ca2+]. We explored the impact of Ca2+ on the kinetics of membrane resealing by monitoring the entry of a YO-PRO-1 dye (YP) in BPAE and HEK cells. Ca2+ was promptly removed or added after the electric pulse (EP) by a fast-step perfusion. YP entry increased sharply after the EP and gradually slowed down following either a single- or a double-exponential function. In BPAE cells permeabilized by a single 300- or 600-ns EP at 14 kV/cm in a Ca2+-free medium, perfusion with 2 mM of external Ca2+ advanced the 90% resealing and reduced the dye uptake about twofold. Membrane restoration was accomplished by a combination of fast, Ca2+-independent resealing (τ = 13–15 s) and slow, Ca2+-dependent processes (τ ~70 s with Ca2+ and ~ 110 s or more without it). These time constants did not change when the membrane damage was doubled by increasing EP duration from 300 to 600 ns. However, injury by microsecond-range EP (300 and 600 μs) took longer to recover even when the membrane initially was less damaged, presumably because of the larger size of pores made in the membrane. Full membrane recovery was not prevented by blocking both extra- and intracellular Ca2+ (by loading cells with BAPTA or after Ca2+ depletion from the reticulum), suggesting the recruitment of unknown Ca2+-independent repair mechanisms.  相似文献   

6.
Location-dependent photogeneration of calcium waves in HeLa cells   总被引:4,自引:0,他引:4  
The calcium ion (Ca2+) concentrations in a cell are responsible for the control of vital cellular functions and have been widely studied as a means to investigate and control cell activities. Here, we demonstrate Ca2+ wave generation in HeLa cells by femtosecond laser irradiation and show unexpected properties of the Ca2+ release and propagation. When the laser was focused in the cell cytoplasm, Ca2+ release was independent of both external Ca2+ influx and the phosphoinositide-phospholipase C (PLC) signaling pathway. The nucleus was not a susceptible target for laser-induced Ca2+ release, whereas irradiation of the plasma membrane produced evidence of transient poration, through which the extracellular solution could enter the cell. By chelating extracellular Ca2+, we found that laser-induced influx of ethylene glycol tetra-acetic acid (EGTA) can compete with calcium-induced calcium release and significantly delay or suppress the onset of the Ca2+ wave in the target cell. Intercellular Ca2+ propagation was adenosine triphosphate-dependent and could be observed even when the target cell cytosolic Ca2+ rise was suppressed by influx of EGTA. The irradiation effect on overall cell viability was also tested and found to be low (85% at 6h after irradiation by 60 mW average power). Laser-induced Ca2+ waves can be reliably generated by controlling the exposure and focal position and do not require the presence of caged Ca2+. The technique has the potential to replace other methods of Ca2+ stimulation, which either require additional caged molecules in the cell or do not have an interaction that is as well localized.  相似文献   

7.
Neuroendocrine adrenal chromaffin cells release neurohormones catecholamines in response to Ca2+ entry via voltage-gated Ca2+ channels (VGCCs). Adrenal chromaffin cells also express non-voltage-gated channels, which may conduct Ca2+ at negative membrane potentials, whose role in regulation of exocytosis is poorly understood. We explored how modulation of Ca2+ influx at negative membrane potentials affects basal cytosolic Ca2+ concentration ([Ca2+]i) and exocytosis in metabolically intact voltage-clamped bovine adrenal chromaffin cells. We found that in these cells, Ca2+ entry at negative membrane potentials is balanced by Ca2+ extrusion by the Na+/Ca2+ exchanger and that this balance can be altered by membrane hyperpolarization or stimulation with an inflammatory hormone bradykinin. Membrane hyperpolarization or application of bradykinin augmented Ca2+-carrying current at negative membrane potentials, elevated basal [Ca2+]i, and facilitated synchronous exocytosis evoked by the small amounts of Ca2+ injected into the cell via VGCCs (up to 20 pC). Exocytotic responses evoked by the injections of the larger amounts of Ca2+ via VGCCs (> 20 pC) were suppressed by preceding hyperpolarization. In the absence of Ca2+ entry via VGCCs and Ca2+ extrusion via the Na+/Ca2+ exchanger, membrane hyperpolarization induced a significant elevation in [Ca2+]i and asynchronous exocytosis. Our results indicate that physiological interferences, such as membrane hyperpolarization and/or activation of non-voltage-gated Ca2+ channels, modulate basal [Ca2+]i and, consequently, segregation of exocytotic vesicles and their readiness to be released spontaneously and in response to Ca2+ entry via VGCCs. These mechanisms may play role in homeostatic plasticity of neuronal and endocrine cells.  相似文献   

8.
L cells exhibit spontaneous oscillations of membrane potential in accord with fluctuations of the cytoplasmic Ca2+ concentration. Upon addition of low-density lipoprotein (LDL), L cells show a prolonged hyperpolarization which is followed by an increase in the frequency of membrane potential oscillations. These membrane potential changes induced by LDL were inhibited by Ca2+-channel blockers. LDL-induced membrane potential changes were accompanied by a vigorous pinocytosis which was coupled with the formation of ring-like ridge structures on the cell surface. These electrical and morphological changes were also induced by high-density lipoprotein (HDL) but not by very-low-density lipoprotein (VLDL). These results suggest that the application of LDL or HDL to the membrane surface elicits a rapid influx of Ca2+ into the cytosol, resulting in membrane hyperpolarization. A rise in cytoplasmic Ca2+ may be implicated in the primary factor for the pinocytic process.  相似文献   

9.
Summary We have previously reported hyperpolarizing membrane potential changes in a monkey kidney cell line (JTC-12) which has characteristics resembling proximal tubular cells. These hyperpolarizations could be observed spontaneously or evoked by mechanically touching adjacent cells. In this report, we have shown further evidence that these hyperpolarizations are elicited by an increase in membrane conductance to K+ which is caused by an increase in cytosolic Ca2+ concentration. In addition, we have found another type of hyperpolarization which is evoked by applying flow of extracellular fluid to the cell. Intracellular injection of Ca2+ and Sr2+ evoked hyperpolarizations, while intracellular injection of Mn2+ and Ba2+ did not. Intracellular injection of EGTA suppressed both spontaneous and mechanically evoked hyperpolarizations. In Ca2+-free medium, both spontaneous and flow-evoked hyperpolarizations were not observed, while mechanical stimuli consistently evoked hyperpolarization. In Na+-free medium, the incidence of cells showing the spontaneous or flow-evoked hyperpolarization increased, and the amplitude and the duration of the mechanically evoked hyperpolarization became greater. Quinidine inhibited all types of hyperpolarization. These data suggest that hyperpolarizations in JTC-12 cells are due to an increase in Ca2+-activated K+ conductance.  相似文献   

10.
Intercellular Ca2+ waves are commonly observed in many cell types. In non-excitable cells, intercellular Ca2+ waves are mediated by gap junctional diffusion of a Ca2+ mobilizing messenger such as IP3. Since Ca2+ is heavily buffered in the cytosolic environment, it has been hypothesized that the contribution of the diffusion of Ca2+ to intercellular Ca2+ waves is limited. Here, we report that in the presence of plasma membrane Ca2+ ATPase inhibitors, locally-released Ca2+ from the flash-photolysis of caged-Ca2+ appeared to induce further Ca2+ release and were propagated from one cell to another, indicating that Ca2+ was self-amplified to mediate intercellular Ca2+ waves. Our findings support the notion that non-excitable cells can establish a highly excitable medium to communicate local responses with distant cells.  相似文献   

11.
1. 1. It has previously been demonstrated that an increase in extracellular Ca2+ concentration induces a transient increase in K+ permeability and associated hyperpolarization of the red cell membrane of the giant salamander, Amphiuma means. This phenomenon is analogous to the Ca2+-induced KCl loss observed in ATP-depleted human red cells and red cell ghosts.
2. 2. Histamine, which enhances the Ca2+-induced K+ loss from depleted human red cells, is without effect on this Ca2+-induced hyperpolarization of Amphiuma red cells.
3. 3. Promethazine (10 μM) and mepyramine (1 mM), which inhibit the Ca2+-induced K+ loss in depleted human red cells, also block the Ca2+-related hyperpolarization of Amphiuma erythrocytes.
4. 4. Chlorpromazine (25 μM), despite being a weak antihistamine, is equally effective in blocking the Ca2+-induced hyperpolarization of Amphiuma red cells.
5. 5. Ionophore A23187 causes a large and sustained Ca2+/K+-dependent hyperpolarization even in the presence of normal (1.8 mM) concentrations of Ca2+. This hyperpolarization is relatively insensitive to chlorpromazine and promethazine.
6. 6. The inhibition of the Ca2+-induced hyperpolarization of the Amphiuma red cell membrane by chlorpromazine and promethazine may be related to their properties as local anaesthetics.
Abbreviations: MOPS, morpholinopropane sulphonate  相似文献   

12.
The aim of the present study is to elucidate the effects of the expression of large conductance Ca2+ activated K+ channels (BKCa) in an endothelial cell type normally lacking this channel. The human homologue hslo of BKCa was expressed in cultured bovine pulmonary artery endothelial (CPAE) cells, which have no endogenous BKCa. Membrane potential, ionic currents and Ca2+ signals were investigated in non-transfected and transfected cells using a combined patch clamp and Fura-2 fluorescence technique. In non-transfected control CPAE cells, ATP evoked a Ca2+ activated CI current (Icl,ca). The most prominent current component during ATP stimulation in hslo expressing cells was conducted 13K Ca which resulted in a pronounced transient hyperpolarization. This hyperpolarization, which was absent in non-transfected cells, was enhanced if ICl,Ca was blocked with niflumic acid. The sustained component of the Ca2+ response during ATP stimulation was significantly larger in hslo transfected cells than in non-transfected cells. This plateau level correlated well with the corresponding effects of ATP on the membrane potential, indicating that the expression of cloned BKCa exerts a positive feedback on Ca2+ signals in endothelial cells by counteracting the negative (depolarizing)effect of stimulation of Ca2+-activated CI channels.  相似文献   

13.
Compensated influx and efflux of calcium ions maintain the constancy of Ca2+ concentration in cytoplasm of quiescent cells under variable external conditions. In cell plasma membrane there exist several types of Ca2+ channels with different properties, regulation mechanisms, and pharmacology. Using fluorescent Ca2+-sensitive probes, we have shown here that in T-lymphocytes under resting conditions, Ca2+ influx occurs through special constitutively active Ca2+ channels, permeable to Ni2+ and Mn2+. These channels differ from the receptor-activated SOC channels, from Ca2+ channels activated by arachidonic acid, and from calmidazolium-activated channels. Ca2+ influx rate in quiescent cells increases with a rise in temperature (Q10 =1.9). The strong dependence of the constitutively active channel activity on temperature coincided with the plasma membrane Ca2+-ATPase dependence, indicating that intracellular enzymes regulate the channel activity. To identify the constitutively active channel, we analyzed the effects of L-type Ca2+ channels, SOC channels, Ca2+-independent phospholipase A2, and calmodulin inhibitors. Of all inhibitors listed only dihydropyridine blocker of L-type voltage-dependent Ca2+ channels, isradipin, at a concentration of 1.5 μM completely suppressed calcium influx. However, the channels did not exhibit sensitivity to changes in membrane potential. Our observations testify to the existence of a new nonselective Ca2+ channel in T-lymphocyte plasma membrane and characterize the new channels pharmacologically. The results obtained are important for understanding the regulation mechanisms of Ca2+ channels in plasma membrane of non-excitable cells.  相似文献   

14.
45Ca2+ fluxes across the plasma membrane of zygotes of the fucoid alga, Pelvetia fastagiata (J. Ag.) De Toni, were studied in artificial sea waters of various potassium concentrations. Except for two cases, hyperpolarization of the cell membrane (with low [K+]) increases, and depolarization (with high [K+]) decreases the influx of Ca2+ over the range of [K+] studied (1–100 mM). The fractional increases of influx during hyperpolarization are close to the fractional increases in membrane potential but the decreases during depolarization are much smaller than those in membrane potential. In two anomalous cases, the influxes of 45Ca2+ at a potassium concentration of 30 mM were about 20% higher than the control value instead of being 10% lower.The effluxes of 45Ca2+ are increased by both hyperpolarization and by depolarization. On balance (and excepting the two anomalous cases) the net result of hyperpolarization should be to increase and that of depolarization to decrease intracellular [Ca2+].  相似文献   

15.
16.
Changes in fluorescence intensity of thiodicarbocyanine, DiS-C3(5), were correlated with direct microelectrode potential measurements in red blood cells from Amphiuma means and applied qualitatively to evaluate the effects of extracellular Ca2+, K+ and pH on the membrane potential of human red cells. Increasing extracellular [Ca2+] from 1.8 to 15 mM causes a K+-dependent hyperpolarization and decrease in fluorescence intensity in Amphiuma red cells. Both the hyperpolarization and fluorescence change disappear when the temperature is raised from 17 to 37°C. No change in fluorescence intensity is observed in human red cells with comparable increase in extracellular Ca2+ in the temperature range 5–37°C. Increasing the extracellular pH, however, causes human red cells to respond to an increase in extracellular Ca2+ with a significant but temporary loss in fluorescence intensity. This effect is blocked by EGTA, quinine or by increasing extracellular [K+], indicating that at elevated extracellular pH, human erythrocytes respond to an increase in extracellular Ca2+ with an opening of K+ channels and associated hyperpolarization of the plasma membrane.  相似文献   

17.
In many non-excitable eukaryotic cells, including hepatocytes, Ca2+ oscillations play a key role in intra- and intercellular signalling, thus regulating many cellular processes from fertilisation to death. Therefore, understanding the mechanisms underlying these oscillations, and consequently understanding how they may be regulated, is of great interest. In this paper, we study the influence of reduced Ca2+ plasma membrane efflux on Ca2+ oscillations in hepatocytes. Our previous experiments with carboxyeosin show that a reduced plasma membrane Ca2+ efflux increases the frequency of Ca2+ oscillations, but does not affect the duration of individual transients. This phenomenon can be best explained by taking into account not only the temporal, but also the spatial dynamics underlying the generation of Ca2+ oscillations in the cell. Here we divide the cell into a grid of elements and treat the Ca2+ dynamics as a spatio-temporal phenomenon. By converting an existing temporal model into a spatio-temporal one, we obtain theoretical predictions that are in much better agreement with the experimental observations.  相似文献   

18.
Ca2+ channels are essential to cell birth, life, and death. They can be externally activated by optogenetic tools, but this requires robust introduction of exogenous optogenetic genes for expression of photosensitive proteins in biological systems. Here we present femtoSOC, a method for direct control of Ca2+ channels solely by ultrafast laser without the need for optogenetic tools or any other exogenous reagents. Specifically, by focusing and scanning wavelength-tuned low-power femtosecond laser pulses on the plasma membrane for multiphoton excitation, we directly induced Ca2+ influx in cultured cells. Mechanistic study reveals that photoexcited flavins covalently bind cysteine residues in Orai1 via thioether bonds, which facilitates Orai1 polymerization to form store-operated calcium channels (SOCs) independently of STIM1, a protein generally participating in SOC formation, enabling all-optical activation of Ca2+ influx and downstream signaling pathways. Moreover, we used femtoSOC to demonstrate direct neural activation both in brain slices in vitro and in intact brains of living mice in vivo in a spatiotemporal-specific manner, indicating potential utility of femtoSOC.Subject terms: Biological techniques, Ion channel signalling, Calcium signalling  相似文献   

19.
Macrophage polykaryons associated with the foreign body granuloma display several electrophysiological properties when studied with intracellular microelectrodes. One of the most evident properties is the slow hyperpolarization (2–5 s long, 10–60 mV amplitude), due to transient openings of Ca2+-dependent K+ channels, that is similar to those observed in macrophages. How this oscillation of membrane potential is triggered is not well known and the only way to repeatedly activate it under experimental control is through the intracellular injection of Ca2+. Although this technique is important for understanding the properties of the K+ channels, no information has been obtained about the way Ca2+ levels are raised and controlled in the cytosol. Slow hyperpolarizations can also be triggered by electrical stimulation, but reproducibility is low with cells bathed in physiological solutions. We then decided to investigate the effect of depolarization on the electrophysiological properties of macrophage polykaryons exposed to bathing solutions of several ionic compositions. We show in this paper that cell membrane depolarization induced by a long current pulse can trigger several patterns of membrane potential changes and that, in the absence of extracellular Na+, repetitive oscillations of decaying amplitudes are observed in almost all the cells. They are very similar to the slow hyperpolarizations, are dependent on the presence of extracellular Ca2+, and are blocked by quinine and D-600. Whole-cell patch clamp recording under voltage clamp conditions showed an outward current that oscillates and that also exhibits decaying amplitudes. The data presented here indicate that these oscillations are a consequence of the cyclic opening of the Ca2+-activated K+ channels and support the hypothesis that favors the participation of Ca2+ channels and of the Ca2+/Na+ exchange system in their triggering. These two mechanisms are not enough to explain either why the K+ channels close or why the membrane potential returns to the original level at the end of each cycle. The possibility of using these oscillations as a model to study the slow hyperpolarization is discussed.  相似文献   

20.
The current understanding of Ca2+ channel function is derived from the use of the patch-clamp technique. In particular, the measurement of fast cellular Ca2+ currents is routinely achieved using whole-cell voltage-clamp recordings. However, this experimental approach is not applicable to the study of local native Ca2+ channels during physiological changes of membrane potential in complex cells, since the voltage-clamp configuration constrains the membrane potential to a given value. Here, we report for the first time to our knowledge that Ca2+ currents from individual cells can be quantitatively measured beyond the limitations of the voltage-clamp approach using fast Ca2+ imaging with low-affinity indicators. The optical measurement of the Ca2+ current was correlated with the membrane potential, simultaneously measured with a voltage-sensitive dye to investigate the activation of Ca2+ channels along the apical dendrite of the CA1 hippocampal pyramidal neuron during the back-propagation of an action potential. To validate the method, we analyzed the voltage dependence of high- and low-voltage-gated Ca2+ channels. In particular, we measured the Ca2+ current component mediated by T-type channels, and we investigated the mechanisms of recovery from inactivation of these channels. This method is expected to become a reference approach to investigate Ca2+ channels in their native physiological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号