首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A prominent autocatalytic effect in the hydrolysis of hemicelluloses was observed in the presence of heterogeneous cation-exchange catalysts, Amberlyst 15 and Smopex 101. The kinetic models proposed were based on the reactivities of the non-hydrolysed sugar monomer units and the increase of the rate constant as the reaction progresses and the degree of polymerization decreases. General kinetic models were derived and the kinetic parameters, describing the autocatalytic effect, were determined by non-linear regression analysis. The kinetic model explained very well the overall kinetics, as well as the product distribution in the hydrolysis of hemicelluloses.

  相似文献   

2.
A prominent autocatalytic effect in the hydrolysis of hemicelluloses was observed in the presence of heterogeneous cation-exchange catalysts, Amberlyst 15 and Smopex 101. The kinetic models proposed were based on the reactivities of the non-hydrolysed sugar monomer units and the increase of the rate constant as the reaction progresses and the degree of polymerization decreases. General kinetic models were derived and the kinetic parameters, describing the autocatalytic effect, were determined by non-linear regression analysis. The kinetic model explained very well the overall kinetics, as well as the product distribution in the hydrolysis of hemicelluloses.  相似文献   

3.
4.
Kinetic data on the esterification of palmitic acid with isopropanol were obtained using homogeneous (para‐toluene sulfonic acid, p‐TSA) and heterogeneous (zinc ethanoate coated on silica gel, ZnA/SG) catalysts in a batch reactor. The ZnA/SG catalyst was prepared using a sol–gel technique. The esterification reaction was studied at different reaction temperatures (373–443 K), initial reactants molar ratio (1–5), catalyst loading (1–5 gcat dm?3) and water concentration in feed (0–15 vol%). A power law rate equation was used for homogeneous kinetics analysis. The Langmuir Hinshelwood Hougen Watson (LHHW) model was used for heterogeneous kinetics. The kinetic parameters of both models were obtained using Polymath software. The reaction parameters were used to obtain simulated values of conversion for both catalytic systems. The simulated values were compared with the experimental values and were in good agreement. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The enantioselective hydrogenation of two N‐acetyldehydroamino acids over Cinchona alkaloid‐modified, supported palladium catalysts has been studied. Moderate enantioselectivities, up to 36 %, were obtained in the hydrogenation of 2‐acetamidocinnamic acid over cinchonidine‐modified Pd/TiO2 under low hydrogen pressure. Increase in the pressure or use of benzylamine as additive led to a gradual decrease in the enantiomeric excess and eventually inversion of the sense of the enantioselectivity. On the contrary, the optical purity of the product resulting from the hydrogenation of 2‐acetamidoacrylic acid was significantly increased by addition of benzylamine to the reaction mixture. Enantiomeric excess values up to 58 % and 60 % were obtained over Pd/Al2O3 modified by cinchonidine and cinchonine, respectively. These optical purities are the best obtained in the hydrogenation of dehydroamino acid derivatives over chirally modified heterogeneous metal catalysts.  相似文献   

6.
An extensive screening of both homogeneous and heterogeneous catalysts was carried out for the enantioselective hydrogenation of p‐chlorophenylglyoxylic acid derivatives. For p‐chlorophenylglyoxylic amides only homogeneous Rh‐diphosphine complexes gave satisfactory results, ees up to 87% were observed for the cy‐oxo‐pronop ligand. For methyl p‐chlorophenylglyoxylate both a homogeneous as well as a heterogeneous catalyst performed with ees >90%. A Pt catalyst modified with cinchona derivatives achieved 93% ee for the (R)‐ and 87% ee for the (S)‐methyl p‐chloromandelate. A Ru‐MeObiphep catalyst also reached 93% ee with TONs up to 4000 and TOFs up to 210 h−1. For all catalytic systems the effects of the metal, the nature of the chiral auxiliary and the solvent as well as of the reaction conditions were investigated. The homogeneous process was scaled up to the kg scale and the enantiomeric purity of the product was enhanced to >99% ee by two recrystallizations of the free p‐chlorophenylmandelic acid.  相似文献   

7.
BACKGROUND: Partial hydrogenation of alkynes have industrial and academic relevance on a large scale; industries such as petrochemical, pharmacology and agrochemical use these compounds as raw material. Typical commercial catalysts contains palladium. Finding an economic, active and selective catalyst for the production of alkenes via partial hydrogenation of alkynes is thus an important challenge. On the other hand, the literature on kinetic studies of partial hydrogenation of heavy alkynes is scarce. So the main objectives of this work were to prepare a cheaper catalyst based on low W loading, and study the kinetic of the partial hydrogenation of 1‐heptyne. A pseudo‐homogeneous and six heterogeneous kinetic models were analyzed. The catalyst was characterized by ICP, XPS, DRX, TPR and hydrogen chemisorption techniques. RESULTS: The characterization results indicate that only WOx species are present on the alumina surface. The WOx/Al2O3 catalyst was active and selective for producing 1‐heptene even at low reaction temperatures, the partial hydrogenation of 1‐heptyne proceeds via two irreversible reactions in parallel. CONCLUSION: The best fit of the experimental data was achieved with a heterogeneous Langmuir‐Hinshelwood‐Hougen‐Watson model in which the rate controlling step is the dissociative adsorption of hydrogen. The activation energy was estimated as EH2 = 34.8 kJ mol?1. Copyright © 2012 Society of Chemical Industry  相似文献   

8.
Glycosylation reactions are most commonly encountered in nature. Synthetically, glycosylations are carried out with Lewis acid catalysts or mineral acids. However an environmental threat associated with catalysts has encouraged process modification by alternative development of solid catalysts based glycosylation reactions, which are commercially viable as well. In this contribution comparative study of glycosidic bond formation of 1,2,3,4,6-penta-o-acetyl-β-d-glucopyranoside with various alcohols over variety of reaction promoters/catalyst like p-toluene sulphonic acid, HCl, H2SO4 and MgO–ZrO2 were taken up to evaluate the performance of this potential promoter/catalysts systems. The best catalyst for the selective synthesis of alkyl-β-d-glucopyranosides was MgO–ZrO2 which remains active upto three runs. This replacement of homogeneous acid catalysts by heterogeneous base catalyst shows alkyl-β-d-glucopyranoside as major product at comparatively low temperature range. The effects of variety of parameters were studied in a batch reactor. The mechanism of the reaction over basic mixed metal oxide at 363 K is put forth.  相似文献   

9.
The preparation of oligochitosan with excellent performance via in situ enzymatic hydrolysis of chitosan by amylase in ionic liquid system is reported. It has been found that [Gly]BF4 ionic liquid leads to the good solubility and assistant degradation for chitosan, as well as good biocompatibility for amylase. In the homogeneous system that contained 1.0 g chitosan (degree of deacetylation = 88.5%) and 99.0 g 2 wt % [Gly]BF4 aqueous solution, oligochitosan with 2200 viscosity‐average molecular weight has been obtained after 0.12 g amylase being used for 3 h at 50°C and pH 5.0. This result is superior to that conducted in acetic acid system. Moreover, [Gly]BF4 can be easily separated from the product and reused with only slight performance loss (oligochitosan product with 2700 viscosity‐average molecular weight has been obtained after [Gly]BF4 being reused for five times). In addition, the mechanism for enzymatic hydrolysis of chitosan in [Gly]BF4 ionic liquid has been described. The research on the moisture‐absorption, ‐retention, and antibacterial activity of oligochitosan product shows that the smaller molecular weight would bring the better moisture‐absorption and antibacterial properties. The oligochitosan product with 2200 viscosity‐average molecular weight exhibits preferable antibacterial properties to S. aureus and E. coli. At the same time, the moisture‐absorption and ‐retention capacity of the above product can reach 32% (relative humidity (RH) = 43%), 62% (RH = 81%), and 150% (RH = 43%), 35% (dry silica gel) respectively. The enzymatic preparation of oligochitosan through [Gly]BF4 ionic liquid/water homogeneous system can be an efficient and environment‐friendly method for academics and industry. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41152.  相似文献   

10.
Microgels are monodisperse poly(organosiloxane) microparticles that can be functionalized at their surface. These materials were tested as supports for heterogeneous cocatalysts of the methylaluminoxane type and were used for the polymerizations of olefins with transition‐metal catalysts. The cocatalysts were synthesized directly on the surfaces of the microgel particles by the partial hydrolysis of trimethylaluminum and were then used for the activation of homogeneous catalyst precursors. Complexes of various chemical natures were successfully activated and optimized through variations in the Al/H2O ratio used for the synthesis. Metallocene dichloride complexes and coordination compounds of iron and nickel were tested as catalysts for ethylene polymerization, and the results were compared with the results for the homogeneous systems and heterogeneous systems supported on silica gel (SiO2). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3021–3029, 2002  相似文献   

11.
BACKGROUND: Ethanol‐based organosolv fractionation of lignocellulosic biomass is an effective pretreatment technology for enzymatic cellulose hydrolysis to produce sugars and lignin within a biorefinery. This study focuses on the catalytic effect of H2SO4, HCl, and MgCl2 on organosolv pretreatment of willow wood and wheat straw. RESULTS: The use of catalysts improved fractionation of both feedstocks. The maximum enzymatic cellulose digestibility obtained was 87% for willow wood (using 0.01 mol L?1 H2SO4 as catalyst) and 99% for wheat straw (0.02 mol L?1 HCl). Non‐catalytic organosolv fractionation at identical conditions resulted in 74% (willow wood) and 44% (wheat straw) glucose yield by enzymatic hydrolysis. Application of catalysts in organosolv pretreatment was particularly effective for wheat straw. The influence of the acid catalysts was found to be primarily due to their effect on the pH of the organosolv liquor. Acid catalysts particularly promoted xylan hydrolysis. MgCl2 was less effective than the acid catalysts, but it seemed to more selectively improve delignification of willow wood. CONCLUSION: Application of catalysts in organosolv pretreatment of willow wood and wheat straw was found to substantially improve fractionation and enzymatic digestibility. The use of catalysts can contribute to achieving maximum utilization of lignocellulosic biomass in organosolv‐based biorefineries. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Selective α‐chlorination of propanoic acid to form 2‐monochloropropanoic (MCA) and 2,2‐dichloropropanoic acid (DCA) was investigated in a laboratory‐scale, semibatch reactor at 90–130 °C at atmospheric total pressure and in the presence of chlorosulfonic acid (ClSO3H) and 2,2‐dichloroethanoic acid (DCA′) as catalytic agents and oxygen as a radical scavenger. The decomposition of the catalyst was investigated with sulfur analysis and UV‐spectrometry. The studies revealed that the majority of sulfur remains in the reaction mixture, but is converted to an inactive form during the chlorination. The reasons may be the decomposition of ClSO3H and its reaction with propanoic acid. The kinetic experiments revealed autocatalytic and parallel formation of MCA and DCA, the selectivity being independent of Cl2 concentration in the liquid phase. The experiments with DCA′ also demonstrated that DCA′ has a catalytic effect on the chlorination The experiments confirmed the validity of a previously proposed reaction scheme for α‐chlorination, which comprises the formation of the reaction intermediate (propanoyl chloride) from propanoic acid and ClSO3H, the acid‐catalyzed enolization of the acid and a hydroxyl‐chlorine exchange reaction. The acid‐catalyzed enolization is the rate determining step in the reaction sequence. The kinetic data were fitted to rate equations based on the reaction scheme. © 2000 Society of Chemical Industry  相似文献   

13.
Biodiesel fuel has shown great promise as an alternative to petro-diesel fuel. Biodiesel production is widely conducted through transesterification reaction, catalyzed by homogeneous catalysts or heterogeneous catalysts. The most notable catalyst used in producing biodiesel is the homogeneous alkaline catalyst such as NaOH, KOH, CH3ONa and CH3OK. The choice of these catalysts is due to their higher kinetic reaction rates. However because of high cost of refined feedstocks and difficulties associated with use of homogeneous alkaline catalysts to transesterify low quality feedstocks for biodiesel production, development of various heterogeneous catalysts are now on the increase. Development of heterogeneous catalyst such as solid and enzymes catalysts could overcome most of the problems associated with homogeneous catalysts. Therefore this study critically analyzes the effects of different catalysts used for producing biodiesel using findings available in the open literature. Also, this critical review could allow identification of research areas to explore and improve the catalysts performance commonly employed in producing biodiesel fuel.  相似文献   

14.
Syndiotactic and isotactic polypropylene were produced using the metallocene compounds Ph2C(Flu)(Cp)ZrCl2 and SiMe2(2‐Me,4‐Ph‐Ind)2ZrCl2 in homogeneous system and supported on silica/MAO. These catalysts were evaluated either isolated or as a binary system. In the latter case, the iso‐ and syndiospecific metallocene complexes were immobilized together during the preparation of the supported catalyst. In a further experimental set, the syndio‐ and isospecific isolated heterogeneous catalysts were mixed at the moment of propylene polymerization. The polypropylenes obtained were evaluated using differential scanning calorimetry. The catalytic activities were also investigated. At all the studied polymerization temperatures, the results showed that the binary catalyst produced polypropylenes with lower melting temperatures in comparison with those obtained when the mixture of isolated supported syndio‐ and isospecific catalysts was employed. Moreover, the activation energies for the polymerization of all catalysts systems were calculated, resulting in a lower value for the binary system when compared to that employing the catalyst mixture and to both the isolated supported metallocene catalysts. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 628–637, 2006  相似文献   

15.
The development of metallocene‐based catalysts is an important advance on the study of polyolefinic materials. However, due to the rather different conditions that are established in actual applications, only around 3% of these polymers are obtained from metallocene technology. In view of this, novel strategies must be developed to produce metallocene‐based catalysts that are more thermally stable, which is a fundamental requirement to establish metallocene technologies. Homogeneous and heterogeneous polymerizations of ethylene were compared, using the Ph2C(Cp)(Flu)ZrCl2/MAO system. Homogeneous polymerizations were more active than the corresponding supported reactions. At low ethylene pressure, the addition of 1‐hexene increases the activity under homogeneous conditions. Nevertheless, this is not observed on the respective supported systems. At higher pressure conditions, all polymerizations attained higher yields. However, when the reaction temperature increases the activity significantly decreases under homogeneous conditions. Furthermore, when the polymerization was performed under heterogeneous conditions the deactivation was lower. The homogeneous and supported catalytic systems show different characteristics and, in all attempted reactions, immobilization of the molecular catalyst reduces the activity. However, the deactivation ratio was lower when the polymerization was performed under heterogeneous conditions. This means that immobilization of Ph2C(Cp)(Flu)ZrCl2 on silica can improve the thermal stability of the catalytic species. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
The aim of the present work was to prepare microgel nanocomposites based on silver and magnetite to apply as adsorbents and heterogeneous catalysts for removal of methylene blue (MB) cationic dye from aqueous solution. For this, 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and acrylamide (AAm) monomers were used to prepare AMPS/AAm microgel based on the emulsion technique. Ag and Fe3O4 nanoparticles were embedded into the AMPS/AAm microgel using the in situ technique. Their particle sizes, surface charges, crystalline lattice structure, morphology, magnetic properties and thermal stability were investigated. The AMPS/AAm hydrogel nanocomposites were used as an adsorbent to remove MB dye. The AMPS/AAm microgel nanocomposites were tested as catalysts to reduce MB and degrade its chemical structure with heterogeneous Fenton oxidation using Ag and Fe3O4 nanocomposites, respectively. This study presents promising data as the prepared materials used as adsorbents and catalysts show competitive features compared with the data presented in the literature. © 2019 Society of Chemical Industry  相似文献   

17.
The hydrolysis of cinnamaldehyde to natural benzaldehyde was investigated systematically using tetramethylammonium- based amino acid ionic liquids as homogeneous catalysts. The results indicated that tetramethylammonium prolinate ([N1111][Pro]) can be a powerful catalyst for the highly efficient hydrolysis of cinnamaldehyde, in which natural benzaldehyde was obtained with almost 94% yield and over 99% selectivity in 1 h. Moreover, kinetic study showed that compared with other catalysts, the catalytic system of [N1111][Pro] has a lower activation energy of 38.30 kJ·mol?1 in the hydrolysis reaction, indicating superior catalytic performance of [N1111][Pro]. Quantum-mechanical calculations further manifested that such high performance originates from the cooperative catalysis of the secondary amino and carboxyl group in the anion [Pro].  相似文献   

18.
Biuret was synthesized from urea in a batch reactor using various homogeneous and heterogeneous catalysts, with the aim of searching for efficient catalyst in converting non-catalytic reaction to catalytic reaction. For this purpose, zeolite, heteropolyacid, organic acid and base, multicomponent bismuth molybdate, and multicomponent bismuth molybdate-alumina mixed catalysts were tested. It was revealed that the performance of catalytic reaction was better than that of non-catalytic reaction in the synthesis of biuret from urea. Among the homogeneous acid and base catalysts tested, thionyl chloride (SOCl2) showed the best catalytic performance. Among the heterogeneous catalysts tested, on the other hand, a mixed catalyst comprising multicomponent bismuth molybdate (Co8Fe3Bi1Mo12O50) and alumina showed the best catalytic performance.  相似文献   

19.
The objective of this work was to study the hydrolysis kinetics and also the character of the involvement of the epoxidation catalyst (Na2WO4 – sodium tungstate) on the hydrolysis of cis‐epoxysuccinic acid (the initial product in the hydroxylation reaction of maleic acid by hydrogen peroxide). The results obtained at 65 °C clearly revealed that the hydrolysis reaction exhibits a considerably low rate in the absence of a catalyst whilst the rate is significantly enhanced by the introduction of catalytic quantities of Na2WO4. The phenomenon of end‐product inhibition was observed in this study and the results obtained permitted the development of a kinetic model consistent with experimental observations. Analysis of the kinetic model shows that the reaction is first order with respect to the concentrations of the catalyst and the epoxide. However, tartaric acid has a strong inhibitive influence on the overall reaction rate. © 1999 Society of Chemical Industry  相似文献   

20.
The effects of the particle size of a Fe/Cu/K catalyst on CO and CO2 hydrogenation reactions as well as the variation of crucial factors such as surface area and basicity, reduction, carburization, and catalytic behavior of precipitated Fe/Cu/K catalysts were evaluated. Hematite nanoparticle catalysts with various surface tensions were produced by homogeneous precipitation in alcohol/water solvents. The basicity of the K‐promoted iron catalyst was higher in iron catalysts with lower particle size. The increase in K‐basic sites at the surface of catalysts with smaller particle size was attributed to their higher surface areas. Elevation of catalyst basicity led to considerably stronger dissociative CO adsorption. Shifting the oxygen removal pattern to lower temperature was the consequence of faster nucleation of FeCx crystallites on promoted surface oxides. CO2 hydrogenation can occur in two distinct direct and indirect routes via the Fischer‐Tropsch mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号