首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Integration of scheduling and control involves extensive information exchange and simultaneous decision making in industrial practice (Engell and Harjunkoski, Comput Chem Eng. 2012;47:121–133; Baldea and Harjunkoski I, Comput Chem Eng. 2014;71:377–390). Modeling the integration of scheduling and dynamic optimization (DO) at control level using mathematical programming results in a Mixed Integer Dynamic Optimization which is computationally expensive (Flores‐Tlacuahuac and Grossmann, Ind Eng Chem Res. 2006;45(20):6698–6712). In this study, we propose a framework for the integration of scheduling and control to reduce the model complexity and computation time. We identify a piece‐wise affine model from the first principle model and integrate it with the scheduling level leading to a new integration. At the control level, we use fast Model Predictive Control (fast MPC) to track a dynamic reference. Fast MPC also overcomes the increasing dimensionality of multiparametric MPC in our previous study (Zhuge and Ierapetritou, AIChE J. 2014;60(9):3169–3183). Results of CSTR case studies prove that the proposed approach reduces the computing time by at least two orders of magnitude compared to the integrated solution using mp‐MPC. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3304–3319, 2015  相似文献   

2.
An efficient decomposition method to solve the integrated problem of scheduling and dynamic optimization for sequential batch processes is proposed. The integrated problem is formulated as a mixed‐integer dynamic optimization problem or a large‐scale mixed‐integer nonlinear programming (MINLP) problem by discretizing the dynamic models. To reduce the computational complexity, we first decompose all dynamic models from the integrated problem, which is then approximated by a scheduling problem based on the flexible recipe. The recipe candidates are expressed by Pareto frontiers, which are determined offline by using multiobjective dynamic optimization to minimize the processing cost and processing time. The operational recipe is then optimized simultaneously with the scheduling decisions online. Because the dynamic models are encapsulated by the Pareto frontiers, the online problem is a mixed‐integer programming problem which is much more computationally efficient than the original MINLP problem, and allows the online implementation to deal with uncertainties. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2379–2406, 2013  相似文献   

3.
4.
A rolling‐horizon optimal control strategy is developed to solve the online scheduling problem for a real‐world refinery diesel production based on a data‐driven model. A mixed‐integer nonlinear programming (MINLP) scheduling model considering the implementation of nonlinear blending quality relations and quantity conservation principles is developed. The data variations which drive the MINLP model come from different sources of certain and uncertain events. The scheduling time horizon is divided into equivalent discrete time intervals, which describe regular production and continuous time intervals which represent the beginning and ending time of expected and unexpected events that are not restricted to the boundaries of discrete time intervals. This rolling‐horizon optimal control strategy ensures the dimension of the diesel online scheduling model can be accepted in industry use. LINGO is selected to be the solution software. Finally, the daily diesel scheduling scheme of one entire month for a real‐world refinery is effectively solved. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1160–1174, 2013  相似文献   

5.
Online integration of scheduling and control is crucial to cope with process uncertainties. We propose a new online integrated method for sequential batch processes, where the integrated problem is solved to determine controller references rather than process inputs. Under a two‐level feedback loop structure, the integrated problem is solved in a frequency lower than that of the control loops. To achieve the goal of computational efficiency and rescheduling stability, a moving horizon approach is developed. A reduced integrated problem in a resolving horizon is formulated, which can be solved efficiently online. Solving the reduced problem only changes a small part of the initial solution, guaranteeing rescheduling stability. The integrated method is demonstrated in a simulated case study. Under uncertainties of the control system disruption and the processing unit breakdown, the integrated method prevents a large loss in the production profit compared with the simple shifted rescheduling solution. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1654–1671, 2014  相似文献   

6.
A novel adaptive surrogate modeling‐based algorithm is proposed to solve the integrated scheduling and dynamic optimization problem for sequential batch processes. The integrated optimization problem is formulated as a large scale mixed‐integer nonlinear programming (MINLP) problem. To overcome the computational challenge of solving the integrated MINLP problem, an efficient solution algorithm based on the bilevel structure of the integrated problem is proposed. Because processing times and costs of each batch are the only linking variables between the scheduling and dynamic optimization problems, surrogate models based on piece‐wise linear functions are built for the dynamic optimization problems of each batch. These surrogate models are then updated adaptively, either by adding a new sampling point based on the solution of the previous iteration, or by doubling the upper bound of total processing time for the current surrogate model. The performance of the proposed method is demonstrated through the optimization of a multiproduct sequential batch process with seven units and up to five tasks. The results show that the proposed algorithm leads to a 31% higher profit than the sequential method. The proposed method also outperforms the full space simultaneous method by reducing the computational time by more than four orders of magnitude and returning a 9.59% higher profit. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4191–4209, 2015  相似文献   

7.
This article is concerned with global optimization of water supply system scheduling with pump operations to minimize total energy cost. The scheduling problem is first formulated as a non‐convex mixed‐integer nonlinear programming (MINLP) problem, accounting for flow rates in pipes, operation profiles of pumps, water levels of tanks, and customer demand. Binary variables denote on–off switch operations for pumps and flow directions in pipes, and nonlinear terms originate from characteristic functions for pumps and hydraulic functions for pipes. The proposed MINLP model is verified with EPANET, which is a leading software package for water distribution system modeling. We further develop a novel global optimization algorithm for solving the non‐convex MINLP problem. To demonstrate the applicability of the proposed model and the efficiency of the tailored global optimization algorithm, we present results of two case studies with up to 4 tanks, 5 pumps, 5 check valves, and 21 pipes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4277–4296, 2016  相似文献   

8.
Mixed‐integer linear fractional program (MILFP) is a class of mixed‐integer nonlinear programs (MINLP) where the objective function is the ratio of two linear functions and all constraints are linear. Global optimization of large‐scale MILFPs can be computationally intractable due to the presence of discrete variables and the pseudoconvex/pseudoconcave objective function. We propose a novel and efficient reformulation–linearization method, which integrates Charnes–Cooper transformation and Glover's linearization scheme, to transform general MILFPs into their equivalent mixed‐integer linear programs (MILP), allowing MILFPs to be globally optimized effectively with MILP methods. Extensive computational studies are performed to demonstrate the efficiency of this method. To illustrate its applications, we consider two batch scheduling problems, which are modeled as MILFPs based on the continuous‐time formulations. Computational results show that the proposed approach requires significantly shorter CPU times than various general‐purpose MINLP methods and shows similar performance than the tailored parametric algorithm for solving large‐scale MILFP problems. Specifically, it performs with respect to the CPU time roughly a half of the parametric algorithm for the scheduling applications. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4255–4272, 2013  相似文献   

9.
Achieving operational safety of chemical processes while operating them in an economically‐optimal manner is a matter of great importance. Our recent work integrated process safety with process control by incorporating safety‐based constraints within model predictive control (MPC) design; however, the safety‐based MPC was developed with a centralized architecture, with the result that computation time limitations within a sampling period may reduce the effectiveness of such a controller design for promoting process safety. To address this potential practical limitation of the safety‐based control design, in this work, we propose the integration of a distributed model predictive control architecture with Lyapunov‐based economic model predictive control (LEMPC) formulated with safety‐based constraints. We consider both iterative and sequential distributed control architectures, and the partitioning of inputs between the various optimization problems in the distributed structure based on their impact on process operational safety. Moreover, sufficient conditions that ensure feasibility and closed‐loop stability of the iterative and sequential safety distributed LEMPC designs are given. A comparison between the proposed safety distributed EMPC controllers and the safety centralized EMPC is demonstrated via a chemical process example. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3404–3418, 2017  相似文献   

10.
Economic model predictive control (EMPC) is a control scheme that combines real‐time dynamic economic process optimization with the feedback properties of model predictive control (MPC) by replacing the quadratic cost function with a general economic cost function. Almost all the recent work on EMPC involves cost functions that are time invariant (do not explicitly account for time‐varying process economics). In the present work, we focus on the development of a Lyapunov‐based EMPC (LEMPC) scheme that is formulated with an explicitly time‐varying economic cost function. First, the formulation of the proposed two‐mode LEMPC is given. Second, closed‐loop stability is proven through a theoretical treatment. Last, we demonstrate through extensive closed‐loop simulations of a chemical process that the proposed LEMPC can achieve stability with time‐varying economic cost as well as improve economic performance of the process over a conventional MPC scheme. © 2013 American Institute of Chemical Engineers AIChE J 60: 507–519, 2014  相似文献   

11.
A proactive energy management strategy for a stand‐alone hybrid renewable energy system is presented. The study was motivated by the system built in Lambton College (Sarnia, Ontario, Canada) which includes photovoltaic arrays, wind turbine, battery, electrolyzers, hydrogen storage tanks, and fuel cells. The control architecture consists of two levels of hierarchy: (1) optimal predictive scheduling at the supervisory level and (2) local controllers for each of the system units. A “day‐ahead” approach is followed at the supervisory level and a bidirectional communication between the supervisory, proactive control, and the low‐level control layer is established. The proposed energy management strategy accounts for external (i.e., weather and demand) and internal disturbances. The efficacy of the proposed strategy is demonstrated through case studies. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2546–2556, 2014  相似文献   

12.
Sensor network design (SND) is a constrained optimization problem requiring systematic and effective solution algorithms for determining where best to locate sensors. A SND algorithm is developed for maximizing plant efficiency for an estimator‐based control system while simultaneously satisfying accuracy requirements for the desired process measurements. The SND problem formulation leads to a mixed integer nonlinear programming (MINLP) optimization that is difficult to solve for large‐scale system applications. Therefore, a sequential approach is developed to solve the MINLP problem, where the integer problem for sensor selection is solved using the genetic algorithm while the nonlinear programming problem including convergence of the “tear stream” in the estimator‐based control system is solved using the direct substitution method. The SND algorithm is then successfully applied to a large scale, highly integrated chemical process. © 2014 American Institute of Chemical Engineers AIChE J, 61: 464–476, 2015  相似文献   

13.
Establishing an explicit feedback connection between production management and process control decisions is a key requirement for more nimble and cost effective process operations in today's variable market conditions. Past research efforts focused on embedding dynamic process information in the production scheduling problem. In this article, we propose a novel framework for closing the scheduling loop, based on considering the process‐level events and disturbances that impact the implementation of scheduling decisions. We emphasize the role of a comprehensive fault detection, isolation and reconstruction mechanism as a trigger for rescheduling decisions and for reflecting the process capabilities altered by these events in the rescheduling problem formulation. Our framework is agnostic to the process type, and we present two (continuous process, sequential batch process) case studies to demonstrate its applicability. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1959–1973, 2017  相似文献   

14.
In model‐based refinery scheduling, the varying composition of the crude being refined is a major challenge, especially for those reaction processes. A classification based, multimodel approach is proposed to handle the frequently varying crude. The idea is to build a scheduling model for each type of feed crude, and the type can be determined using an online classifier. The recently emerged deep belief network is introduced to develop the classifier, which provides more accurate classification than the traditional neural network. The proposed method is demonstrated through modeling a fluidized catalytic cracking unit (the mostly affected by varying crude), and then the scheduling of a refinery that was carefully simulated to mimic the actual operation of a refinery in northern China. The results reveal that the multimodel approach is effective in handling varying crude. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2525–2532, 2014  相似文献   

15.
This work provides a framework for linear model predictive control (MPC) of nonlinear distributed parameter systems (DPS), allowing the direct utilization of existing large‐scale simulators. The proposed scheme is adaptive and it is based on successive local linearizations of the nonlinear model of the system at hand around the current state and on the use of the resulting local linear models for MPC. At every timestep, not only the future control moves are updated but also the model of the system itself. A model reduction technique is integrated within this methodology to reduce the computational cost of this procedure. It follows the equation‐free approach (see Kevrekidis et al., Commun Math Sci. 2003;1:715–762; Theodoropoulos et al., Proc Natl Acad Sci USA. 2000;97:9840‐9843), according to which the equations of the model (and consequently of the simulator) need not be given explicitly to the controller. The latter forms a “wrapper” around an existing simulator using it in an input/output fashion. This algorithm is designed for dissipative DPS, dissipativity being a prerequisite for model reduction. The equation‐free approach renders the proposed algorithm appropriate for multiscale systems and enables it to handle large‐scale systems. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

16.
The tactical planning and scheduling of chemical process networks consisting of both dedicated and flexible processes under demand and supply uncertainty is addressed. To integrate the stochastic inventory control decisions with the production planning and scheduling, a mixed‐integer nonlinear programming (MINLP) model is proposed that captures the stochastic nature of the demand variations and supply delays using the guaranteed‐service approach. The model takes into account multiple tradeoffs and simultaneously determines the optimal selection of production schemes, purchase amounts of raw materials, sales of final products, production levels of processes, detailed cyclic production schedules for flexible processes, and working inventory and safety stock levels of all chemicals involved in the process network. To globally optimize the resulting nonconvex MINLP problems with modest computational times, the model properties are exploited and a tailored branch‐and‐refine algorithm based on the successive piecewise linear approximation is proposed. To handle the degeneracy of alternative optima in assignment configurations of production scheduling, three symmetry breaking cuts are further developed to accelerate the solution process. The application of the model and the performance of the proposed algorithm are illustrated through three examples with up to 25 chemicals and 16 processes including at most 8 production schemes for each flexible process. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1511–1532, 2013  相似文献   

17.
BACKGROUND: A generalized methodology for the synthesis of a hybrid controller for affine systems using sequential adaptive networks (SAN) is presented. SAN consists of an assembly of neural networks that are ordered in a chronological sequence, with one network assigned to each sampling interval. Using a suitable process model based on oxygen metabolism and an a priori objective function, a hybrid control law is derived that can use online measurements and the states predicted by SAN for computing the desired control action. RESULTS: The performance of the SAN–hybrid controller is tested for simulated fed‐batch production of methionine for three different process conditions. Simulations assume that online measurements of dissolved oxygen (DO) concentration are available. The performance of the SAN–hybrid controller gave an NRMSE of ~10?4 in the absence of noise, ~10?3 and ~10?2 for ± 5% and ± 10% noise in the DO measurement and ~10?2 for parameter uncertainty when compared with the ideal model prediction. CONCLUSIONS: The observed performance for unmeasured state prediction and control implementation shows that the proposed SAN–hybrid controller can efficiently compute the manipulated variable required to maintain methionine production along the optimized trajectory for different conditions. The test results show that the SAN–hybrid controller can be used for online real‐time implementation in fed‐batch bioprocesses. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
Integration of planning and scheduling optimizes simultaneous decisions at both levels, thereby leading to more efficient operation. A three‐level discrete‐time algorithm which uses nonlinear models and integrates planning and detailed scheduling is introduced: first level optimizes nonlinear blend models via multiperiod nonlinear programming (NLP), where period boundaries are initially determined by the inventory pinch points; second level uses fixed recipes (from the first level) in a multiperiod mixed‐integer linear program to determine first an optimal production plan and then to optimize an approximate schedule which minimizes the total number of switches in blenders and swing tanks; third level computes detailed schedules that adhere to inventory constraints computed in the approximate schedule. If inventory infeasibilities appear at the second or the third level, the first‐level periods are subdivided and blend recipes are reoptimized. Algorithm finds the same or better solutions and is substantially faster than previously published full‐space continuous‐time model. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2475–2497, 2014  相似文献   

19.
Process plants are operating in an increasingly global and dynamic environment, motivating the development of dynamic real‐time optimization (DRTO) systems to account for transient behavior in the determination of economically optimal operating policies. This article considers optimization of closed‐loop response dynamics at the DRTO level in a two‐layer architecture, with constrained model predictive control (MPC) applied at the regulatory control level. A simultaneous solution approach is applied to the multilevel DRTO optimization problem, in which the convex MPC optimization subproblems are replaced by their necessary and sufficient Karush–Kuhn–Tucker optimality conditions, resulting in a single‐level mathematical program with complementarity constraints. The performance of the closed‐loop DRTO strategy is compared to that of the open‐loop prediction counterpart through a multi‐part case study that considers linear dynamic systems with different characteristics. The performance of the proposed strategy is further demonstrated through application to a nonlinear polymerization reactor grade transition problem. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3896–3911, 2017  相似文献   

20.
In this paper, we propose a novel integration method to solve the scheduling problem and the control problem simultaneously. The integrated problem is formulated as a mixed-integer dynamic optimization (MIDO) problem which contains discrete variables in the scheduling problem and constraints of differential equations from the control problem. Because online implementation is crucial to deal with uncertainties and disturbances in operation and control of the production system, we develop a fast computational strategy to solve the integration problem efficiently and allow its online applications. In the proposed integration framework, we first generate a set of controller candidates offline for each possible transition, and then reformulate the integration problem as a simultaneous scheduling and controller selection problem. This is a mixed-integer nonlinear fractional programming problem with a non-convex nonlinear objective function and linear constraints. To solve the resulting large-scale problem within sufficiently short computational time for online implementation, we propose a global optimization method based on the model properties and the Dinkelbach's algorithm. The advantage of the proposed method is demonstrated through four case studies on an MMA polymer manufacturing process. The results show that the proposed integration framework achieves a lower cost rate than the conventional sequential method, because the proposed framework provides a better tradeoff between the conflicting factors in scheduling and control problems. Compared with the simultaneous approach based on the full discretization and reformulation of the MIDO problem, the proposed integration framework is computationally much more efficient, especially for large-scale cases. The proposed method addresses the challenges in the online implementation of the integrated scheduling and control decisions by globally optimizing the integrated problem in an efficient way. The results also show that the online solution is crucial to deal with the various uncertainties and disturbances in the production system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号