首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The white-rot fungusBjerkandera adusta produces volatile chlorinated phenyl compounds. The main compounds identified were 3-chloro-4-methoxybenzaldehyde (3-chloro-p-anisaldehyde), 3-chloro-4-methoxybenzyl alcohol (3-chloro-p-anisyl alcohol), 3,5-dichloro-4-methoxybenzaldehyde (3,5-dichloro-p-anisaldehyde), and 3,5-dichloro, 4-methoxybenzyl alcohol (3,5-dichloro-p-anisyl alcohol).p-Anisaldehyde, veratraldehyde and the corresponding alcohols,p-anisyl alcohol and veratryl alcohol were produced simultaneously. Even with a very low concentration of chloride in the medium (< 10–5 m), chlorinated aromatic compounds were still observed. Addition of bromide to the culture medium led to the production of brominated compounds: 3-bromo-4-methoxybenzaldehyde, 3-bromo-4-methoxybenzyl alcohol, 3,5-dibromo-4-methoxybenzaldehyde and 3-bromo-5-chloro-4-methoxybenzaldehyde. These brominated compounds have not previously been reported as natural products. Although iodo-aromatic compounds were not produced by supplementation of the medium with iodide, isovanillin was found in the culture broth under these conditions. This compound may be formed by substitution of the iodine intermediate by a hydroxyl group on the third carbon of the ring. Diiodomethane or chloroiodomethane were also found. It is the first time that the production of halomethane has been related to the production of halogenated aromatic compounds. All the strains tested have these capabilities.  相似文献   

2.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

3.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

4.
The ecologically important white rot basidiomycete Hypholoma fasciculare was previously shown to produce large amounts of adsorbable organic halogens (AOX). The purposes of this study were to identify the time period of AOX production in relation to the primary and secondary metabolic phases of the growth cycle of the fungus, to determine the maximal specific AOX production rates and final AOX yields on the different substrates and to account for the measured AOX in identifiable compounds. The AOX production was observed to take place during the transition between the primary and secondary metabolic phases of the growth cycle of the fungus. The maximum AOX production rates ranged from 0.63 to 3.23 mg AOX per gram of dry mycelium per day and the final AOX yields ranged from 0.88 and 1.50 percent of dry weight of mycelium on five different substrates including natural woody substrates. The AOX produced by the fungus was stable in all five substrates, even after prolonged incubation periods. However, the composition of the AOX changed drastically. Initially most of the AOX was accounted for by the compound 3,5-dichloro-p-anisyl alcohol; however, after prolonged incubation this compound was largely converted into 3,5-dichloro-p-anisic acid in N-rich medium and into unidentified organohalogens in N-limited medium.  相似文献   

5.
Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 μM) and DBHB (250 to 260 μM) were used as electron acceptors for growth. Doubling times for growth (means ± standard deviations for triplicate cultures) on bromoxynil (18.4 ± 5.2 h) and DBHB (11.9 ± 1.4 h), determined by rate of [14C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.  相似文献   

6.
The synthesis and degradation of anthropogenic and natural organohalides are the basis of a global halogen cycle. Chlorinated hydroquinone metabolites (CHMs) synthesized by basidiomycete fungi and present in wetland and forest soil are constituents of that cycle. Anaerobic dehalogenating bacteria coexist with basidiomycete fungi in soils and sediments, but little is known about the fate of these halogenated fungal compounds. In sediment microcosms, the CHMs 2,3,5,6-tetrachloro-1,4-dimethoxybenzene and 2,3,5,6-tetrachloro-4-methoxyphenol (TCMP) were anaerobically demethylated to tetrachlorohydroquinone (TCHQ). Subsequently, TCHQ was converted to trichlorohydroquinone and 2,5-dichlorohydroquinone (2,5-DCHQ) in freshwater and estuarine enrichment cultures. Screening of several dehalogenating bacteria revealed that Desulfitobacterium hafniense strains DCB2 and PCP1, Desulfitobacterium chlororespirans strain Co23, and Desulfitobacterium dehalogenans JW/DU1 sequentially dechlorinate TCMP to 2,3,5-trichloro-4-methoxyphenol and 3,5-dichloro-4-methoxyphenol (3,5-DCMP). After a lag, these strains demethylate 3,5-DCMP to 2,6-DCHQ, which is then completely dechlorinated to 1,4-dihydroquinone (HQ). 2,5-DCHQ accumulated as an intermediate during the dechlorination of TCHQ to HQ by the TCMP-degrading desulfitobacteria. HQ accumulation following TCMP or TCHQ dechlorination was transient and became undetectable after 14 days, which suggests mineralization of the fungal compounds. This is the first report on the anaerobic degradation of fungal CHMs, and it establishes a fundamental role for microbial reductive degradation of natural organochlorides in the global halogen cycle.  相似文献   

7.
Following incubation of mesophilic methanogenic floccular sludge from a lab-scale upflow anaerobic sludge bed reactor used to treat cattle manure wastewater, a stable 5-aminosalicylate-degrading enrichment culture was obtained. Subsequently, a Citrobacter freundii strain, WA1, was isolated from the 5-aminosalicylate-degrading methanogenic consortium. The methanogenic enrichment culture degraded 5-aminosalicylate completely to CH4, CO2 and NH4 +, while C. freundii strain WA1 reduced 5-aminosalicylate with simultaneous deamination to 2-hydroxybenzyl alcohol during anaerobic growth with electron donors such as pyruvate, glucose or serine. When grown on pyruvate, C. freundii WA1 converted 3-aminobenzoate to benzyl alcohol and also reduced benzaldehyde to benzyl alcohol. Pyruvate was fermented to acetate, CO2, H2 and small amounts of lactate, succinate and formate. Less lactate (30%) was produced from pyruvate when C. freundii WA1 grew with 5-aminosalicylate as co-substrate.  相似文献   

8.
We investigated the anaerobic biodegradation of mono- and dichlorophenol isomers by fresh (unacclimated) sludge and by sludge acclimated to either 2-chlorophenol, 3-chlorophenol, or 4-chlorophenol. Biodegradation was evaluated by monitoring substrate disappearance and, in selected cases, production of 14CH4 from labeled substrates. In unacclimated sludge, each of the monochlorophenol isomers was degraded. The relative rates of disappearance were in this order: ortho greater than meta greater than para. For the dichlorophenols in unacclimated sludge, reductive dechlorination of the Cl group ortho to phenolic OH was observed, and the monochlorophenol compounds released were subsequently degraded. 3,4-Dichlorophenol and 3,5-dichlorophenol were persistent. Sludge acclimated to 2-chlorophenol cross-acclimated to 4-chlorophenol but did not utilize 3-chlorophenol. This sludge also degraded 2,4-dichlorophenol. Sludge acclimated to 3-chlorophenol cross-acclimated to 4-chlorophenol but not to 2-chlorophenol. This sludge degraded 3,4- and 3,5-dichlorophenol but not 2,3- or 2,5-dichlorophenol. The specific cross-acclimation patterns observed for monochlorophenol degradation demonstrated the existence of two unique microbial activities that were in turn different from fresh sludge. The sludge acclimated to 4-chlorophenol could degrade all three monochlorophenol isomers and 2,4- and 3,4-dichlorophenol. The active microbial population in this sludge appeared to be a mixture of populations present in the 2-chlorphenol- and 3-chlorophenol-acclimated sludges, both of which could utilize 4-chlorophenol. Experiments with 14C-radiolabeled p-chlorophenol, o-chlorophenol, and 2,4-dichlorophenol demonstrated that these compounds were converted to 14CH4 and 14CO2.  相似文献   

9.
Effects of water-soluble sulfur-containing phenolic antioxidants sodium 3-(3′-tert-butyl-4′- hydroxyphenyl)propyl thiosulfonate and potassium 3,5-dimethyl-4-hydroxybenzyl thioethanoate on chemoresistance in tumor cells have been studied. The studied phenolic antioxidants cause oppositely directed changes in the redox properties and chemoresistance in tumor cells. Potassium 3,5-dimethyl-4-hydroxybenzyl thioethanoate increases redox buffering capacity and doxorubicin resistance in tumor cells. Sodium 3-(3′- tert-butyl-4′-hydroxyphenyl)propyl thiosulfonate reduces the redox buffering capacity, which leads to a decrease in the chemoresistance of tumor cells. These observations suggest that one of the key mechanisms responsible for the formation of tumor cell resistance to antitumor compounds is the attenuation of apoptosis through increase of redox buffering capacity. The dependence of protein sensor redox state on oxidant concentrations and on redox buffering capacity in cells has been determined based on the proposed biophysical model of redox-dependent mechanism of apoptosis activation.  相似文献   

10.
Biotransformations of aromatic aldehydes by acetogenic bacteria   总被引:2,自引:0,他引:2  
Vanillin was subject to O demethylation and supported growth of Clostridium formicoaceticum and Clostridium thermoaceticum. Vanillin was also stimulatory to the CO-dependent growth of Peptostreptococcus productus. The aldehyde substituent of vanillin was metabolized by routes which were dependent upon both the acetogen and a co-metabolizable substrate (e.g. carbon monoxide [CO]). C. formicoaceticum and C. thermoaceticum oxidized the aldehyde group of vanillin to the carboxyl level, while P. productus reduced the aldehyde group of vanillin to the alcohol level. In contrast, during CO-dependent growth, C. thermoaceticum reduced 4-hydroxybenzaldehyde to 4-hydroxybenzyl alcohol while P. productus both reduced and oxidized 4-hydroxybenzaldehyde to 4-hydroxybenzyl alcohol and 4-hydroxybenzoate, respectively. These metabolic potentials indicate aromatic aldehydes may affect the flow of reductant during acetogenesis.  相似文献   

11.
3,5-Dihalo-4-hydroxybenzoic acids enhanced adventitious root formation in mung bean (Vigna radiata L.) cuttings. 3,5-Diiodo-4-hydroxybenzoic acid was more active than 3,5-dichloro-4-hydroxybenzoic acid, increasing the number of roots formed by about 4-fold. 2,4-Dinitrophenol also enhanced significantly adventitious root formation in mung bean cuttings. The phenolic compounds were active with or without indole-3-acetic acid. The possible mechanism by which these phenolic compounds enhance rooting is discussed.Abbreviations CCCP carbonyl cyanide 3-chlorophenylhydrazone - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DNP 2,4-dinitrophenol  相似文献   

12.
This paper studies the transformation of phenol and of 3,5-dichlorophenol (3,5-DCP) upon UVA irradiation of anthraquinone-2-sulfonate (AQ2S). Light-excited AQ2S is able to oxidise phenol, 3,5-DCP, and AQ2S. Transformation reactions do not proceed at a significant extent in the absence of molecular oxygen, in which case recombination reactions of initially formed oxidised and reduced radical species (and/or radical ions) would yield back the initial substrates. AQ2S hydroxyderivatives are the main transformation intermediates, while the phenoxyl radicals arising upon oxidation of phenol and of 3,5-DCP react with the substrates to yield dihydroxybiphenyls and phenoxyphenols. Very small amounts of catechol and of 3,5-dichlorocatechol were observed, indicating a possible minor role of the hydroxyl radicals in the reactivity of the system. Interesting results from an environmental point of view are the formation of 2-hydroxydibenzofuran from phenol and of various tetrachlorinated dihydroxybiphenyls and phenoxyphenols from 3,5-DCP, suggesting that quinone photochemistry can be an important pathway for the formation of hazardous secondary pollutants in the environment.  相似文献   

13.
Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 microM) and DBHB (250 to 260 microM) were used as electron acceptors for growth. Doubling times for growth (means +/- standard deviations for triplicate cultures) on bromoxynil (18.4 +/- 5.2 h) and DBHB (11.9 +/- 1.4 h), determined by rate of [14C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.  相似文献   

14.
The synthesis and degradation of anthropogenic and natural organohalides are the basis of a global halogen cycle. Chlorinated hydroquinone metabolites (CHMs) synthesized by basidiomycete fungi and present in wetland and forest soil are constituents of that cycle. Anaerobic dehalogenating bacteria coexist with basidiomycete fungi in soils and sediments, but little is known about the fate of these halogenated fungal compounds. In sediment microcosms, the CHMs 2,3,5,6-tetrachloro-1,4-dimethoxybenzene and 2,3,5,6-tetrachloro-4-methoxyphenol (TCMP) were anaerobically demethylated to tetrachlorohydroquinone (TCHQ). Subsequently, TCHQ was converted to trichlorohydroquinone and 2,5-dichlorohydroquinone (2,5-DCHQ) in freshwater and estuarine enrichment cultures. Screening of several dehalogenating bacteria revealed that Desulfitobacterium hafniense strains DCB2 and PCP1, Desulfitobacterium chlororespirans strain Co23, and Desulfitobacterium dehalogenans JW/DU1 sequentially dechlorinate TCMP to 2,3,5-trichloro-4-methoxyphenol and 3,5-dichloro-4-methoxyphenol (3,5-DCMP). After a lag, these strains demethylate 3,5-DCMP to 2,6-DCHQ, which is then completely dechlorinated to 1,4-dihydroquinone (HQ). 2,5-DCHQ accumulated as an intermediate during the dechlorination of TCHQ to HQ by the TCMP-degrading desulfitobacteria. HQ accumulation following TCMP or TCHQ dechlorination was transient and became undetectable after 14 days, which suggests mineralization of the fungal compounds. This is the first report on the anaerobic degradation of fungal CHMs, and it establishes a fundamental role for microbial reductive degradation of natural organochlorides in the global halogen cycle.  相似文献   

15.
Ralstonia sp. strain PS12 is able to use 2,4-, 2,5-, and 3,4-dichlorotoluene as growth substrates. Dichloromethylcatechols are central intermediates that are formed by TecA tetrachlorobenzene dioxygenase-mediated activation at two adjacent unsubstituted carbon atoms followed by TecB chlorobenzene dihydrodiol dehydrogenase-catalyzed rearomatization and then are channeled into a chlorocatechol ortho cleavage pathway involving a chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and dienelactone hydrolase. However, completely different metabolic routes were observed for the three dichloromethylcatechols analyzed. Whereas 3,4-dichloro-6-methylcatechol is quantitatively transformed into one dienelactone (5-chloro-2-methyldienelactone) and thus is degraded via a linear pathway, 3,5-dichloro-2-methylmuconate formed from 4,6-dichloro-3-methylcatechol is subject to both 1,4- and 3,6-cycloisomerization and thus is degraded via a branched metabolic route. 3,6-Dichloro-4-methylcatechol, on the first view, is transformed predominantly into one (2-chloro-3-methyl-trans-) dienelactone. In situ (1)H nuclear magnetic resonance analysis revealed the intermediate formation of 2,5-dichloro-4-methylmuconolactone, showing that both 1,4- and 3,6-cycloisomerization occur with this muconate and indicating a degradation of the muconolactone via a reversible cycloisomerization reaction and the dienelactone-forming branch of the pathway. Diastereomeric mixtures of two dichloromethylmuconolactones were prepared chemically to proof such a hypothesis. Chloromuconate cycloisomerase transformed 3,5-dichloro-2-methylmuconolactone into a mixture of 2-chloro-5-methyl-cis- and 3-chloro-2-methyldienelactone, affording evidence for a metabolic route of 3,5-dichloro-2-methylmuconolactone via 3,5-dichloro-2-methylmuconate into 2-chloro-5-methyl-cis-dienelactone. 2,5-Dichloro-3-methylmuconolactone was transformed nearly exclusively into 2-chloro-3-methyl-trans-dienelactone.  相似文献   

16.
A novel flavoprotein monooxygenase, 4-hydroxybenzoate 1-hydroxylase (decarboxylating), from Candida parapsilosis CBS604 was purified to apparent homogeneity. The enzyme is induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, or 3,4-dihydroxybenzoate as the sole carbon source. The purified monooxygenase is a monomer of about 50 kDa containing flavin adenine dinucleotide as weakly bound cofactor. 4-Hydroxybenzoate 1-hydroxylase from C. parapsilosis catalyzes the oxidative decarboxylation of a wide range of 4-hydroxybenzoate derivatives with the stoichiometric consumption of NAD(P)H and oxygen. Optimal catalysis is reached at pH 8, with NADH being the preferred electron donor. By using (18)O2, it was confirmed that the oxygen atom inserted into the product 1,4-dihydroxybenzene is derived from molecular oxygen. 19F nuclear magnetic resonance spectroscopy revealed that the enzyme catalyzes the conversion of fluorinated 4-hydroxybenzoates to the corresponding hydroquinones. The activity of the enzyme is strongly inhibited by 3,5-dichloro-4-hydroxybenzoate, 4-hydroxy-3,5-dinitrobenzoate, and 4-hydroxyisophthalate, which are competitors with the aromatic substrate. The same type of inhibition is exhibited by chloride ions. Molecular orbital calculations show that upon deprotonation of the 4-hydroxy group, nucleophilic reactivity is located in all substrates at the C-1 position. This, and the fact that the enzyme is highly active with tetrafluoro-4-hydroxybenzoate and 4-hydroxy-3-nitrobenzoate, suggests that the phenolate forms of the substrates play an important role in catalysis. Based on the substrate specificity, a mechanism is proposed for the flavin-mediated oxidative decarboxylation of 4-hydroxybenzoate.  相似文献   

17.
This study deals with the synthesis of benzophenone sulfonamides hybrids (131) and screening against urease enzyme in vitro. Studies showed that several synthetic compounds were found to have good urease enzyme inhibitory activity. Compounds 1 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-nitrobenzenesulfonohydrazide), 2 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-3′′-nitrobenzenesulfonohydrazide), 3 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-methoxybenzenesulfonohydrazide), 4 (3′′,5′′-dichloro-2′′-hydroxy-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 6 (2′′,4′′-dichloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 8 (5-(dimethylamino)-N′-((4-hydroxyphenyl)(phenyl)methylene)naphthalene-1-sulfono hydrazide), 10 (2′′-chloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 12 (N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide) have found to be potently active having an IC50 value in the range of 3.90–17.99?µM. These compounds showed superior activity than standard acetohydroxamic acid (IC50?=?29.20?±?1.01?µM). Moreover, in silico studies on most active compounds were also performed to understand the binding interaction of most active compounds with active sites of urease enzyme. Structures of all the synthetic compounds were elucidated by 1H NMR, 13C NMR, EI-MS and FAB-MS spectroscopic techniques.  相似文献   

18.
We studied the degradation of pentachlorophenol (PCP) under methanogenic and sulfate-reducing conditions with an anaerobic mixed culture derived from sewage sludge. The consortium degraded PCP via 2,3,4,5-tetrachlorophenol, 3,4,5-trichlorophenol, and 3,5-dichlorophenol and eventually accumulated 3-chlorophenol. Dechlorination of PCP and metabolites was inhibited in the presence of sulfate, thiosulfate, and sulfite. A decrease in the rate of PCP transformation was noted when the endogenous dissolved H2 was depleted below 0.11 μM in sulfate-reducing cultures. The effect on dechlorination observed with sulfate could be relieved by addition of molybdate, a competitive inhibitor of sulfate reduction. Addition of H2 reduced the inhibition observed with sulfuroxy anions. The inhibitory effect of sulfuroxy anions may be due to a competition for H2 between sulfate reduction and dechlorination. When cultured under methanogenic conditions, the consortium degraded several chlorinated and brominated phenols.  相似文献   

19.
The hydrophobicities and electrophoretic mobilities of isolates from methanogenic anaerobic granular sludge were measured and compared with those of strains from culture collections. All new isolates were highly hydrophobic, indicating that the upflow anaerobic sludge blanket reactor concept selects for hydrophobic bacteria. Methanothrix soehngenii, a methanogen often observed in methanogenic granular sludge, was highly hydrophobic and showed low electrophoretic mobility at pH 7. The role of this strain in the formation of methanogenic granular sludge is discussed.  相似文献   

20.
Rhodococcus chlorophenolicus PCP-I, a degrader of polychlorinated phenols, guaiacols (2-methoxyphenols), and syringols (2,6-dimethoxyphenols), was shown to O-methylate the degradation intermediate, a chlorinated para-hydroquinone, into 4-methoxyphenol. O-methylation was constitutively expressed, whereas the degradation of chlorophenols and chlorohydroquinones was inducible in R. chlorophenolicus. The O-methylating reaction required two hydroxyl groups in positions para to each other. R. chlorophenolicus selectively methylated the hydroxyl group flanked by two chlorine substituents. Tetrachlorohydroquinone, trichlorohydroquinone, and 2,6-dichlorohydroquinone were methylated into tetrachloro-4-methoxyphenol, 2,3,5-trichloro-4-methoxyphenol, and 3,5-dichloro-4-methoxyphenol, respectively. Chlorohydroquinones with only one chlorine adjacent to a hydroxyl group were methylated only in trace amounts, and no metabolite was formed from hydroquinone. The degradation intermediates formed in hydroxylation of tetrachloroguaiacol and trichlorosyringol by R. chlorophenolicus were O-methylated into two isomeric trichlorodimethoxyphenols and two isomeric dichlorotrimethoxyphenols, respectively. R. chlorophenolicus also degraded the polychlorinated methylation products (tetrachlorinated and trichlorinated 4-methoxyphenols), but not mono- and dichlorinated 4-methoxyphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号