首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Fixed offshore wind turbines usually have large underwater supporting structures.The fluid influences the dynamic characteristics of the structure system.The dynamic model of a 5-MW tripod offshore wind turbine considering the pile–soil system and fluid structure interaction(FSI) is established,and the structural modes in air and in water are obtained by use of ANSYS.By comparing low-order natural frequencies and mode shapes,the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed.On basis of the above work,seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method.The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water.The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.  相似文献   

2.
针对海上风电整机系统,建立了一体化流固耦合分析方法。在模拟过程中,采用浸入边界法解决风机叶片旋转引起的静动干涉问题,利用改进的守恒式 level set(简称 ICLS)方法捕捉海浪自由面,并使用交错迭代法求解流固耦合方程。通过构建 “风机—塔架—基础”一体化流固耦合数值模拟方法,能够在一次仿真计算中实现海上风电整机系统的全过程数值模拟,准确求解多荷载耦合作用下“风机—塔架—基础”的整体结构动力响应。以某单桩式海上风电工程为例,验证了本方法能够实现对海上风电整体系统的一体化分析。  相似文献   

3.
Offshore wind turbines can exhibit dynamic resonant behavior due to sea states with wave excitation frequencies coinciding with the structural eigenfrequencies. In addition to significant contributions to fatigue actions, dynamic load amplification can govern extreme wind turbine responses. However, current design requirements lack specifications for assessment of resonant loads, particularly during parked or idling conditions where aerodynamic damping contributions are significantly reduced. This study demonstrates a probabilistic approach for assessment of offshore wind turbines under extreme resonant responses during parked situations. Based on in-situ metocean observations on the North Sea, the environmental contour method is used to establish relevant design conditions. A case study on a feasible large monopile design showed that resonant loads can govern the design loads. The presented framework can be applied to assess the reliability of wave-sensitive offshore wind turbine structures for a given site-specific metocean conditions and support structure design.  相似文献   

4.
为科学分析潮间带风电场建设对潮间带滩涂稳定性的影响,文章综述国内外潮间带动态变化分析的研究进展,提出假想沙体表面判别法(HSSD);从单时相DEM中定量估算海上风机建设引起的潮间带地形变化,分析海上风机建设及运行对近海沙体地形冲淤变化的贡献率和贡献方式;采用增强型水边线法(EWM)构建多时相潮间带DEM,开展潮间带滩涂冲淤变化影响海上风机安全性和稳定性的定量评估。实践应用证明,该方案可用于海上风机对潮间带地形变化影响的定量遥感监测。  相似文献   

5.
Xie  Shuang-yi  Zhang  Kai-fei  He  Jiao  Gao  Jian  Zhang  Cheng-lin 《中国海洋工程》2022,36(3):372-383

The asymmetric or periodically varying blade loads resulted by wind shear become more significant as the blade length is increased to capture more wind power. Additionally, compared with the onshore wind turbines, their offshore counterparts are subjected to additional wave loadings in addition to wind loadings within their lifetime. Therefore, vibration control and fatigue load mitigation are crucial for safe operation of large-scale offshore wind turbines. In view of this, a multi-body model of an offshore bottom-fixed wind turbine including a detailed drivetrain is established in this paper. Then, an individual pitch controller (IPC) is designed using disturbance accommodating control. State feedback is used to add damping in flexible modes of concern, and a state estimator is designed to predict unmeasured signals. Continued, a coupled aero-hydro-servo-elastic model is constructed. Based on this coupled model, the load reduction effect of IPC and the dynamic responses of the drivetrain are investigated. The results showed that the designed IPC can effectively reduce the structural loads of the wind turbine while stabilizing the turbine power output. Moreover, it is found that the drivetrain dynamic responses are improved under IPC.

  相似文献   

6.
This paper addresses joint wind-wave induced dynamic responses of a semi-type offshore floating wind turbine (OFWT) under normal states and fault event conditions. The analysis in this paper is conducted in time domain, using an aero-hydro-servo-elastic simulation code-FAST. Owing to the unique viscous features of the reference system, the original viscous damping model implemented in FAST is replaced with a quadratic one to gain an accurate capture of viscous effects. Simulation cases involve free-decay motion in still water, steady motions in the presence of regular waves and wind as well as dynamic response in operational sea states with and without wind. Simulations also include the cases for transient responses induced by fast blade pitching after emergency shutdown. The features of platform motions, local structural loads and a typical mooring line tension force under a variety of excitations are obtained and investigated.  相似文献   

7.
In connection with the design of floating wind turbines, stochastic dynamic analysis is a critical task considering nonlinear wind and wave forces. To study the random structural responses of a newly designed submerged tension leg platform(STLP) wind turbine, a set of dynamic simulations and comparison analysis with the MIT/NREL TLP wind turbine are carried out. The signal filter method is used to evaluate the mean and standard deviations of the structural response. Furthermore, the extreme responses are estimated by using the mean upcrossing rate method. The fatigue damages for blade root, tower, and mooring line are also studied according to the simulated time-series. The results and comparison analysis show that the STLP gives small surge and pitch motions and mooring line tensions in operational sea states due to the small water-plane area. Additionally, in severe sea states, the STLP gives lower extreme values of platform pitch, slightly larger surge and heave motions and better towerbase and mooring line fatigue performances than those of the MIT/NREL TLP. It is found that the STLP wind turbine has good performances in structural responses and could be a potential type for exploiting the wind resources located in deep waters.  相似文献   

8.
王宾  李红涛  刘嵩  万德成 《海洋工程》2020,38(3):94-101
针对渤海湾某风电场的海上固定式风机支撑结构,采用适用于大直径单桩结构的PSI曲线模拟桩土相互作用,并采用SACS软件建立支撑结构的动力分析模型。首先对支撑结构进行模态分析;其次考虑海冰结构的随机振动作用模式,根据适用于渤海湾的随机冰力谱构造随机冰载荷时程曲线,基于半耦合的时域方法,采用SACS软件对支撑结构进行冰激振动分析,输出塔筒顶部加速度、单桩基底剪力及倾覆力矩等响应参数的时程曲线和响应功率谱;最后针对冰厚、冰速和海冰强度等海冰参数对支撑结构的冰激振动进行敏感性分析。研究结果表明,在随机振动模式下,冰载荷及结构动力响应对冰厚和海冰强度较为敏感,在进行冰激振动分析时应合理确定冰厚和海冰强度等参数。  相似文献   

9.
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm.  相似文献   

10.
The worldwide demand for renewable energy is increasing rapidly. Wind energy appears as a good solution to copy with the energy shortage situation. In recent years, offshore wind energy has become an attractive option due to the increasing development of the multitudinous offshore wind turbines. Because of the unstable vibration for the barge-type offshore wind turbine in various maritime conditions, an ameliorative method incorporating a tuned mass damper (TMD) in offshore wind turbine platform is proposed to demonstrate the improvement of the structural dynamic performance in this investigation. The Lagrange's equations are applied to establish a limited degree-of-freedom (DOF) mathematical model for the barge-type offshore wind turbine. The objective function is defined as the suppression rate of the standard deviation for the tower top deflection due to the fact that the tower top deflection is essential to the tower bottom fatigue loads, then frequency tuning method and genetic algorithm (GA) are employed respectively to obtain the globally optimum TMD design parameters using this objective function. Numerical simulations based on FAST have been carried out in typical load cases in order to evaluate the effect of the passive control system. The need to prevent the platform mass increasing obviously has become apparent due to the installation of a heavy TMD in the barge-type platform. In this case, partial ballast is substituted for the equal mass of the tuned mass damper, and then the vibration mitigation is simulated in five typical load cases. The results show that the passive control can improve the dynamic responses of the barge-type wind turbine by placing a TMD in the floating platform. Through replacing partial ballast with a uniform mass of the tuned mass damper, a significant reduction of the dynamic response is also observed in simulation results for the barge-type floating structure.  相似文献   

11.
Tension leg platform (TLP) for offshore wind turbine support is a new type structure in wind energy utilization.The strong-interaction method is used in analyzing the coupled model,and the dynamic characteristics of the TLP for offshore wind turbine support are recognized.As shown by the calculated results:for the lower modes,the shapes are water’s vibration,and the vibration of water induces the structure’s swing;the mode shapes of the structure are complex,and can largely change among different members;the mode shapes of the platform are related to the tower’s.The frequencies of the structure do not change much after adjusting the length of the tension cables and the depth of the platform;the TLP has good adaptability for the water depths and the environment loads.The change of the size and parameters of TLP can improve the dynamic characteristics,which can reduce the vibration of the TLP caused by the loads.Through the vibration analysis,the natural vibration frequencies of TLP can be distinguished from the frequencies of condition loads,and thus the resonance vibration can be avoided,therefore the offshore wind turbine can work normally in the complex conditions.  相似文献   

12.
风机基础作为海上风机整体结构的重要组成部分,承受着上部风机所受到的风浪流荷载,并且对风机的安全性及可靠性至关重要。吸力式桶形基础由于其安装简单和可重复利用等优点,在海洋平台基础中得到了广泛应用,并逐步应用于海上风机基础中。但由于海上风机与海洋平台在海洋环境中的荷载工况有一定的差别,仍需要通过对其承载特性研究现状进行全面认识,以实现吸力式桶形基础在海上风机基础中的可靠应用。文中通过总结和评价现有研究对桶形基础在不同土体条件以及荷载条件下进行试验及数值模拟分析得到的研究结果,综述了静荷载和循环荷载作用下砂土和黏土中的吸力式桶形基础的承载特性研究现状,以及海上风机吸力式桶形基础的相关研究。文章展望了目前应用于海上风机基础的桶形基础仍缺乏的研究,为海上风机吸力式桶形基础的可靠应用及后续研究提供重要参考。  相似文献   

13.
借助FAST软件对OC4半潜式浮式风机平台进行数值计算,分析了影响海上浮式风机平台首摇运动的一系列重要因素及其变化规律(如风向变化、浪向变化、陀螺力矩等)。研究了平台首摇运动所诱导的风机系统动力响应,发现浮式风机首摇运动不仅会加剧平台耦合运动响应,而且还会影响风机的气动性能和加剧锚泊张力波动。提出并探讨了几种减小海上浮式风机支撑平台首摇运动的方法。  相似文献   

14.
海上风力发电单立柱支撑结构拟静力分析   总被引:1,自引:0,他引:1  
海上风电支撑结构不同于一般海洋结构物,它受到复杂的风机气动荷载、机械控制荷载和海洋环境荷载的多重作用。文章针对海上某单立柱风电支撑结构,通过分析其结构固有频率的约束限制以及外环境荷载的动力特性,综合考虑外环境荷载尤其是风机荷载的动力放大影响,给出海上单立柱风电支撑结构的拟静力分析思路。并进行极端及操作工况下支撑结构在风、浪、流环境荷载组合作用的应力计算和强度分析。提出该种结构在使用现有海洋结构物设计规范和风机设计规范时的注意事项。该分析比较结果及结论可作为海上类似风电支撑结构的设计参考。  相似文献   

15.
随着海上风能的开发向深水发展,支撑风机的载体平台越来越受到关注。在经济性与安全性、稳定性的多重要求下,张力腿平台(TLP)在海洋风能资源的开发中体现出了重要地位。采用基于开源平台OpenFOAM开发的计算流体动力学(CFD)水动力学求解器naoe-FOAM-SJTU对一座处于中等水深下的风机基础水下TLP(STLP)的运动响应进行了数值模拟与研究。文中使用弹簧锚链模型模拟STLP的垂向系泊锁链系统,模拟该平台在不同波浪环境下的运动响应情况。首先将STLP单自由度自由衰减CFD模拟结果与已有全耦合时域分析结果进行对比,验证了naoe-FOAM-SJTU求解器及使用弹簧模型模拟STLP系泊系统的准确性与可靠性。随后在考虑非线性波浪载荷的情况下研究极端海况下与一般作业海况下STLP的运动响应情况,计算工况中的风机基础所受弯矩及锚链受力情况,并详细展示流场、速度场信息,分析高阶波浪成分、不同海况等条件对于STLP运动性能的影响。研究结果表明,TLP在中等水深中具有良好的运动性能,naoe-FOAM-SJTU求解器可以有效模拟水中生产平台在波浪环境下的水动力问题,并可以对整个流场进行可视化展示与分析。  相似文献   

16.
渤海海域单柱三桩式海上风电结构冰激振动分析   总被引:2,自引:1,他引:1  
针对渤海某区域以单柱三桩式结构为支撑的海上风电系统进行了冰激振动分析。首先模拟风电结构具有显著动力特性差异的主-从式结构特征,根据工程场址海域冰情条件,设置了合理的海冰分析工况,随后依据概化冰力函数确定作用于风电基础结构上的动冰力时程,开展全时域瞬态动力分析。通过对计算结果的详尽分析,选定表征冰与风电结构相互作用进程的综合控制因子Ic,建立基于综合控制因子的冰振事件区划及其出现概率的预判方法。相关方法将为渤海海域风电工程结构冰激振动问题的预判与评估提供参考。  相似文献   

17.
以三浮筒(Tri-floater)型半潜式风机系统为对象,采用时域方法,考虑垂荡板的黏性阻尼效应,研究系泊缆直径、长度、预张力和布置方式等参数对其在风浪流中动力响应特性的影响规律,提出了一种系泊参数优化方法。在此基础上,根据东海和南海三个不同水深区域百年一遇海洋环境条件,通过调整Tri-floater型浮式基础的吃水和垂荡板等参数,有效地提高了其运动响应周期,减小了其运动响应幅值。同时,根据风机浮式基础运动幅值的设计规范要求,针对三个不同水深区域特点,设计了Tri-floater型浮式基础的系泊系统。计算结果表明,改进后的Tri-floater型半潜式风机系统能满足百年一遇极端环境下的作业要求,适合于东海和南海海洋环境下海上风能资源的开发。  相似文献   

18.
Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research.  相似文献   

19.
Chen  Jia-hao  Hu  Zhi-qiang  Liu  Ge-liang  Wan  De-cheng 《中国海洋工程》2019,33(1):1-13
In order to account for rigid-flexible coupling effects of floating offshore wind turbines, a nonlinear rigid-flexible coupled dynamic model is proposed in this paper. The proposed nonlinear coupled model takes the higher-order axial displacements into account, which are usually neglected in the conventional linear dynamic model. Subsequently,investigations on the dynamic differences between the proposed nonlinear dynamic model and the linear one are conducted. The results demonstrate that the stiffness of the turbine blades in the proposed nonlinear dynamic model increases with larger overall motions but that in the linear dynamic model declines with larger overall motions.Deformation of the blades in the nonlinear dynamic model is more reasonable than that in the linear model as well.Additionally, more distinct coupling effects are observed in the proposed nonlinear model than those in the linear model. Finally, it shows that the aerodynamic loads, the structural loads and global dynamic responses of floating offshore wind turbines using the nonlinear dynamic model are slightly smaller than those using the linear dynamic model. In summary, compared with the conventional linear dynamic model, the proposed nonlinear coupling dynamic model is a higher-order dynamic model in consideration of the rigid-flexible coupling effects of floating offshore wind turbines, and accord more perfectly with the engineering facts.  相似文献   

20.
对于海上浮式风机而言,由于受到剪切风、塔影效应、浮式基础运动等因素的共同影响,其气动载荷会更加复杂,因此如何准确快速地对海上风力机的气动性能进行预估显得尤为重要。基于速度势的非定常面元法理论,研究海上浮式风机气动载荷特性,编制了相关的计算程序。以NREL 5 MW风机为例,建立了叶片和尾流的三维数值模型,计算得到了不同风速下风机的输出功率以及叶片表面的压力分布,对比数据结果分析了该方法的可靠性。针对非定常流动,模拟了剪切风和塔影效应的作用,并重点分析了浮式基础运动对风机气动载荷的影响。研究表明,浮式基础的纵荡和纵摇会增加输出功率的波动幅值,艏摇运动会导致单个叶片上的气动载荷产生较大的波动,为浮式风机叶片控制提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号