首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
《Journal of power sources》2006,162(2):757-764
The combination of an electrolyzer and a fuel cell can provide peak power control in a decentralized/distributed power system. The electrolyzer produces hydrogen and oxygen from off-peak electricity generated by the renewable energy sources (wind turbine and photovoltaic array), for later use in the fuel cell to produce on-peak electricity. An issue related to this system is the control of the hydrogen loop (electrolyzer, tank, fuel cell). A number of control algorithms were developed to decide when to produce hydrogen and when to convert it back to electricity, most of them assuming that the electrolyzer and the fuel cell run alternatively to provide nominal power (full power). This paper presents a complete model of a stand-alone renewable energy system with hydrogen storage controlled by a dynamic fuzzy logic controller (FLC). In this system, batteries are used as energy buffers and for short time storage. To study the behavior of such a system, a complete model is developed by integrating the individual sub-models of the fuel cell, the electrolyzer, the power conditioning units, the hydrogen storage system, and the batteries. An analysis of the performances of the dynamic fuzzy logic controller is then presented. This model is useful for building efficient peak power control.  相似文献   

2.
The Hydrogen Research Institute (HRI) has developed a stand-alone renewable energy (RE) system based on energy storage in the form of hydrogen. When the input devices (wind generator and photovoltaic array) produce more energy than is required by the load, the excess energy is converted by an electrolyzer to electrolytic hydrogen, which is then stored after stages of compression, purification and filtration. Conversely, during a time of input energy deficit, this process is reversed and the hydrogen produced earlier is reconverted to electrical energy through a fuel cell. The oxygen which has been produced by the electrolyzer during the hydrogen production is also stored at high pressure, after having gone through a purification and drying process. This stored oxygen can be re-utilized as oxidant in place of compressed air in the fuel cell. The modifications of the electrolyzer for oxygen storage and re-utilization of it as oxidant for the fuel cell are presented. Furthermore, the HRI has designed and developed the control system with power conditioning devices for effective energy management and automatic operation of the RE system. The experimental results show that a reliable autonomous RE system can be realized for such seasonal energy sources, using stored hydrogen as the long-term energy buffer, and that utilizing the electrolyzer oxygen by-product as oxidant in the fuel cell increases system performance significantly.  相似文献   

3.
We present the results of an analysis of the performance of a photovoltaic array that complement the power output of a wind turbine generator in a stand-alone renewable energy system based on hydrogen production for long-term energy storage. The procedure for estimating hourly solar radiation, for a clear sunny day, from the daily average solar insolation is also given. The photovoltaic array power output and its effective contribution to the load as well as to the energy storage have been determined by using the solar radiation usability concept. The excess and deficit of electrical energy produced from the renewable energy sources, with respect to the load, govern the effective energy management of the system and dictate the operation of an electrolyser and a fuel cell generator. This performance analysis is necessary to determine the effective contribution from the photovoltaic array and the wind turbine generator and their contribution to the load as well as for energy storage.  相似文献   

4.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen.  相似文献   

5.
A micro hydrogen system in conjunction with renewable energy, namely a wind turbine, a photovoltaic array, and an air-source heat pump, is designed to satisfy the power, heating, and cooling needs of a stand-alone household in a Mediterranean climate. An hourly-based model is used to simulate its operation throughout the year. A unique power management strategy is applied to achieve optimum configuration and size of the components without shortage or excess energy. Unlike previous practices, there is no release of excess heat into the environment. An innovative combination of a fuel cell and a heat pump followed the household's electrical and thermal (domestic hot water/heating and space cooling) profile. Almost 80% of the energy for preparing hot water and household cooling/heating was obtained from waste heat from these devices. The system is compared to the most commonly used stand-alone hybrid renewable energy system with battery storage. The hydrogen system needs four time less batteries and it does not need a back-up diesel generator. Although the energy storage in batteries is more efficient than in hydrogen, the hydrogen system requires only 10% larger primary energy input than the system with only battery storage.  相似文献   

6.
In this paper, a wind turbine energy system is integrated with a hydrogen fuel cell and proton exchange membrane electrolyzer to provide electricity and heat to a community of households. Different cases for varying wind speeds are taken into consideration. Wind turbines meet the electricity demand when there is sufficient wind speed available. During high wind speeds, the excess electricity generated is supplied to the electrolyzer to produce hydrogen which is stored in a storage tank. It is later utilized in the fuel cell to provide electricity during periods of low wind speeds to overcome the shortage of electricity supply. The fuel cell operates during high demand conditions and provides electricity and heat for the residential application. The overall efficiency of the system is calculated at different wind speeds. The overall energy and exergy efficiencies at a wind speed 5 m/s are then found to be 20.2% and 21.2% respectively.  相似文献   

7.
《能源学会志》2014,87(4):330-340
This paper presents a comparative study of four sizing methods for a stand-alone hybrid generation system integrating renewable energies (photovoltaic panels and wind turbine) and backup and storage system based on battery and hydrogen (fuel cell, electrolyzer and hydrogen storage tank). Two of them perform a technical sizing. In one case, the sizing is based on basic equations, and in the other case, an optimal technical sizing is achieved by using Simulink Design Optimization. The other two methods perform an optimal techno-economical sizing by using the hybrid system optimization software HOMER and HOGA, respectively. These methods have been applied to design a stand-alone hybrid system which supplies the load energy demand during a year. A MATLAB-Simulink model of the hybrid system has been used to simulate the performance of hybrid system designed by each method for the stand-alone application under study in this work. The results are reported and discussed in the paper.  相似文献   

8.
A stand-alone power system based on a photovoltaic array and wind generators that stores the excessive energy from renewable energy sources (RES) in the form of hydrogen via water electrolysis for future use in a polymer electrolyte membrane (PEM) fuel cell is currently in operation at Neo Olvio of Xanthi, Greece. Efficient power management strategies (PMSs) for the system have been developed. The PMSs have been assessed on their capacity to meet the power load requirements through effective utilization of the electrolyzer and fuel cell under variable energy generation from RES (solar and wind). The evaluation of the PMS has been performed through simulated experiments with anticipated conditions over a typical four-month time period for the region of installation. The key decision factors for the PMSs are the level of the power provided by the RES and the state of charge (SOC) of the accumulator. Therefore, the operating policies for the hydrogen production via water electrolysis and the hydrogen consumption at the fuel cell depend on the excess or shortage of power from the RES and the level of SOC. A parametric sensitivity analysis investigates the influence of major operating variables for the PMSs such as the minimum SOC level and the operating characteristics of the electrolyzer and the fuel cell in the performance of the integrated system.  相似文献   

9.
Electrolytic hydrogen offers a promising alternative for long-term energy storage of renewable energy (RE). A stand-alone RE system based on energy storage as hydrogen has been developed and installed at the Hydrogen Research Institute, and successfully tested for autonomous operation with developed control system and power conditioning devices. The excess energy produced, with respect to the load requirement, has been sent to the electrolyzer for hydrogen production. When energy produced from the RE sources became insufficient, with respect to the load requirement, the stored hydrogen was fed to a fuel cell to produce electricity. The RE system components have substantially different voltage-current characteristics and they are integrated through power conditioning devices on a dc bus for autonomous operation by using a developed control system. The developed control system has been successfully tested for autonomous operation and energy management of the system. The experimental results clearly indicate that a stand-alone RE system based on hydrogen production is safe and reliable.  相似文献   

10.
The Mexican territory has a large potential for renewable energy development, such as geothermal, hydro, biofuels, wind and solar. Thus, a 2.5 kW hybrid power system (solar, wind and hydrogen) was designed and installed to meet the power demand for a stand-alone application at the University of Zacatecas. The hybrid unit integrates three power energy sources –a photovoltaic system (PV), a micro-wind turbine (WT), a prototype of a unitized regenerative fuel cell (URFC) and energy storage devices (batteries)– in addition to their interaction methodology. The main contribution of this work is the URFC integration to a hybrid power system for the production of H2 (water electrolyzer mode) and energy (fuel cell mode). These three energy technologies were connected in parallel, synchronized to the energy storage system and finally coupled to a power conversion module. To achieve the best performance and energy management, an energy management and control strategy was developed to the properly operation of the power plant. A meteorological station that has wireless sensors for the temperature, the humidity, the solar radiation and the wind speed provides the necessary information (in real time) to the monitor and control software, which computes and executes the short and mid–term decisions about the energy management and the data storage for future analysis.  相似文献   

11.
This paper presents a novel strategy, optimized by genetic algorithms, to control stand-alone hybrid renewable electrical systems with hydrogen storage. The strategy optimizes the control of the hybrid system minimizing the total cost throughout its lifetime. The optimized hybrid system can be composed of renewable sources (wind, PV and hydro), batteries, fuel cell, AC generator and electrolyzer. If the renewable sources produce more energy than the one required by the loads, the spare energy can be used either to charge the batteries or to produce H2 in the electrolyzer. The control strategy optimizes how the spare energy is used. If the amount of energy demanded by the loads is higher than the one produced by the renewable sources, the control strategy determines the most economical way to meet the energy deficit. The optimization of the various system control parameters is done using genetic algorithms. This paper explains the strategy developed and shows its application to a PV–diesel–battery–hydrogen system.  相似文献   

12.
An electrolyzer/fuel cell energy storage system is a promising alternative to batteries for storing energy from solar electric power systems. Such a system was designed, including a proton-exchange membrane (PEM) electrolyzer, high-pressure hydrogen and oxygen storage, and a PEM fuel cell. The system operates in a closed water loop. A prototype system was constructed, including an experimental PEM electrolyzer and combined gas/water storage tanks. Testing goals included general system feasibility, characterization of the electrolyzer performance (target was sustainable 1.0 A/cm2 at 2.0 V per cell), performance of the electrolyzer as a compressor, and evaluation of the system for direct-coupled use with a PV array. When integrated with a photovoltaic array, this type of system is expected to provide reliable, environmentally benign power to remote installations. If grid-coupled, this system (without PV array) would provide high-quality backup power to critical systems such as telecommunications and medical facilities.  相似文献   

13.
Recently, the increasing energy demand has caused dramatic consumption of fossil fuels and unavoidable raising energy prices. Moreover, environmental effect of fossil fuel led to the need of using renewable energy (RE) to meet the rising energy demand. Unpredictability and the high cost of the renewable energy technologies are the main challenges of renewable energy usage. In this context, the integration of renewable energy sources to meet the energy demand of a given area is a promising scenario to overcome the RE challenges. In this study, a novel approach is proposed for optimal design of hybrid renewable energy systems (HRES) including various generators and storage devices. The ε-constraint method has been applied to minimize simultaneously the total cost of the system, unmet load, and fuel emission. A particle swarm optimization (PSO)-simulation based approach has been used to tackle the multi-objective optimization problem. The proposed approach has been tested on a case study of an HRES system that includes wind turbine, photovoltaic (PV) panels, diesel generator, batteries, fuel cell (FC), electrolyzer and hydrogen tank. Finally, a sensitivity analysis study is performed to study the sensibility of different parameters to the developed model.  相似文献   

14.
This paper presents a novel hourly energy management system (EMS) for a stand-alone hybrid renewable energy system (HRES). The HRES is composed of a wind turbine (WT) and photovoltaic (PV) solar panels as primary energy sources, and two energy storage systems (ESS), which are a hydrogen subsystem and a battery. The WT and PV panels are made to work at maximum power point, whereas the battery and the hydrogen subsystem, which is composed of fuel cell (FC), electrolyzer and hydrogen storage tank, act as support and storage system. The EMS uses a fuzzy logic control to satisfy the energy demanded by the load and maintain the state-of-charge (SOC) of the battery and the hydrogen tank level between certain target margins, while trying to optimize the utilization cost and lifetime of the ESS. Commercial available components and an expected life of the HRES of 25 years were considered in this study. Simulation results show that the proposed control meets the objectives established for the EMS of the HRES, and achieves a total cost saving of 13% over other simpler EMS based on control states presented in this paper.  相似文献   

15.
Solar hydrogen is a promising long-term global energy option for the post-fossil fuel era. On the other hand, solar hydrogen may have already found an early commercial application in the form of seasonal energy storage for remote stand-alone photovoltaic (PV) applications. In a stand-alone solar hydrogen energy system, the photovoltaic array is coupled with an electrolyser to produce H2 which is stored to be later converted back to electricity in a fuel cell. The system setup comprises several subsystems which have to be controlled in an optimal way. Numerical simulations are used to get a closer insight into the transient response behavior of these elegant, but rather complicated systems during variable insolation conditions and to estimate the overall system performance accurately over extensive periods of time. The simulations are performed with the H2PHOTO program which has been successfully used for the design of a solar hydrogen pilot plant. It has also shown good accuracy against experimental data.  相似文献   

16.
The main advantage of the hybrid system compared with separate array solar photovoltaic and stand-alone wind turbine is the possibility of the surplus energy storage by transforming it to hydrogen that can be use in fuel cells. However the design and sizing of this kind of technologies need to meet the local microclimate in order to reach higher efficacies. A tool based on an analytical model to sizing, analyze and assess the feasibility of the hybrid wind/photovoltaic/H2 energy conversion systems using real weather data is presented in this work. The model considers an energy balance analysis and electrical variables of the system components; the tool calculates the subsystems efficacy and proposes the improvements to increase the efficiency of the use in surplus energy produced by the hybrid system. To validate the analytical model, simulation based on wind speed and solar radiation measurements from meteorological monitoring station in a Mexican Caribbean City is discussed.  相似文献   

17.
One of the most interesting developments of energy systems based on the utilization of hydrogen is their integration with renewable sources of energy (RES). In fact, hydrogen can operate as a storage and carrying medium of these primary sources. The design and operation of the system could change noticeably, depending on the type and availability of the primary source. In this paper, the results obtained considering a model of a stand-alone energy system supplied just with RES and composed by an electrolyzer, a hydrogen tank and a proton exchange membrane fuel cell are exposed. The energy systems have been designed in order to supply the electricity needs of a residential user in a mountain environment in Italy during a complete year. Three different sources have been considered: solar irradiance (transformed by an array of photovoltaic modules), hydraulic energy (transformed by a micro-hydro turbine in open-flume configuration) and wind speed (transformed by a small-size wind generator). It has been checked that, in that specific location, it is absolutely not convenient to use the wind source; the solar irradiance has a nearly constant availability during the year, and therefore the seasonal storage of the RES in form of hydrogen is the lowest; the availability of the micro-hydro source is less constant than in case of solar irradiance, requiring a higher hydrogen seasonal storage, but its advantage is linked to the higher efficiency of the turbine and the fact that the RES is directly sent to the user with high frequency (for these reasons it is the best plant option).  相似文献   

18.
An electrolyzer and a fuel cell have been integrated in a small-scale stand-alone renewable energy system to demonstrate that hydrogen can be used for long-term stationary energy storage. The economic and environmental performance of such a system is strongly related to the ability of the electrolyzer to convert electrical energy to hydrogen and the ability of the fuel cell to convert hydrogen back to electrical energy, which together define the round-trip efficiency of the hydrogen storage system. One promising way to improve the efficiency as well as to decrease the capital costs of the fuel cell is to recuperate the oxygen from the electrolyzer and use it as the fuel cell oxidant instead of compressed air. This paper presents the modifications made to the system in order to implement oxygen recuperation. The round-trip system efficiency was found to be 18% with oxygen recuperation and 13.5% without it.  相似文献   

19.
Utilizing renewable energy resources is one of the convenient ways to reduce greenhouse gas emissions. However, the intermittent nature of these resources has led to stochastic characteristics in the generation and load balancing of the microgrid systems. To handle these issues, an energy management optimization for microgrids operation should be done to urge the minimization of total system costs, emissions, and fuel consumption. An optimization program for decreasing the operational cost of a hybrid microgrid consisting of photovoltaic array, wind unit, electrolyzer, hydrogen storage system, reformer, and fuel cell is presented. Two different methods of producing hydrogen are considered in this study to ensure the effectiveness of the developed methodology. In the microgrid system with high penetration of renewable energy resources, using storage technologies to compensate for the intermittency of these resources is necessary. To evaluate the functioning of the microgrid system, a mathematical model for each source is developed to coordinate the system operation involving energy conversion between hydrogen and electricity. Particle Swarm Optimization Algorithm is utilized to determine the optimum size and operational energy management within the system. It is evident from the results that there is about a 10% reduction in the amount of CH4 consumption in reformer when the electrolyzer was employed in the system. It is observed that the CH4 reduction in summer and fall is higher than other seasons (10.6% and 11.5%, respectively). The reason is that the highest RES production occurs in these seasons during a year. It is also worth mentioning that the electrolyzer technology would play a significant role in decreasing the CH4 consumption in the microgrid system.  相似文献   

20.
《Journal of power sources》2001,96(1):168-172
An integrated renewable energy (RE) system for powering remote communication stations and based on hydrogen is described. The system is based on the production of hydrogen by electrolysis whereby the electricity is generated by a 10 kW wind turbine (WT) and 1 kW photovoltaic (PV) array. When available, the excess power from the RE sources is used to produce and store hydrogen. When not enough energy is produced from the RE sources, the electricity is then regenerated from the stored hydrogen via a 5 kW proton exchange membrane fuel cell system. Overview results on the performances of the WT, PV, and fuel cells system are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号