首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short fatigue crack growth behaviour in a model cast aluminium piston alloy has been investigated. This has been achieved using a combination of fatigue crack replication methods at various intervals during fatigue testing and post‐mortem analysis of crack profiles. Crack–microstructure interactions have been clearly delineated using a combination of optical microscopy, scanning electron microscopy and electron backscatter diffraction. Results show that intermetallic particles play a significant role in determining the crack path and growth rate of short fatigue cracks. It is observed that the growth of short cracks is often retarded or even arrested at intermetallic particles and grain boundaries. Crack deflection at intermetallics and grain boundaries is also frequently observed. These results have been compared with the long crack growth behaviour of the alloy.  相似文献   

2.
Short fatigue crack growth under multiaxial nonproportional loading Initiation and short fatigue crack growth have been investigated under nonproportional cyclic loading. A critical plane approach based on fracture mechanics is used for modelling the fatigue process. A Paris‐type crack growth law, formulated using the effective cyclic J‐integral as crack driving force parameter, is integrated to give crack growth curves. Crack opening stresses and strains are calculated with approximation equations. Jiang's plasticity model is used to predict the stress‐strain path. The good agreement between model and real damage evolution is shown comparing experimentally determined crack growth curves, crack orientations, and life curves.  相似文献   

3.
Abstract— The problem of the nucleation and growth of short fatigue cracks is addressed from an energetic point of view. It is explained that vanishingly small cracks can only nucleate and grow at the expense of the release of some locally stored energy during the fatigue deformation. This is necessary because an external loading system alone cannot provide a positive driving force for the growth of a crack whose length is below a critical value. The concept of the local driving force is used to explain the nucleation and growth of short fatigue cracks both at plain surfaces and at notches. With this approach a meaningful definition can be given of a "short fatigue crack" and a sound physical interpretation of the Kitagawa-Takahashi plots is provided. The conditions for the existence of non-propagating cracks are clearly established and the relationship between the stress concentration factor at the root of notches and the fatigue limit is explained. The paper sets up a physical framework for the sound understanding and treatment of short fatigue cracks and the microstructural parameters which control their growth.  相似文献   

4.
The fatigue cracks growth rate of a forged HSLA steel (AISI 4130) was investigated using thin single edge notch tensile specimen to simulate the crack development on a diesel train crankshafts. The effect of load ratio, R, was investigated at room temperature. Fatigue fracture surfaces were examined by scanning electron microscopy. An approach based on the crack tip opening displacement range (ΔCTOD) was proposed as fatigue crack propagation criterion. ΔCTOD measurements were carried out using 2D‐digital image correlation techniques. J‐integral values were estimated using ΔCTOD. Under test conditions investigated, it was found that the use of ΔCTOD as a fatigue crack growth driving force parameter is relevant and could describe the crack propagation behaviour, under different load ratio R.  相似文献   

5.
Current fracture mechanics methods for fatigue assessment of welded joints are based on long crack behavior. The present work introduces a method to predict the fatigue strength of welded joints by means of an integrated fracture mechanics approach (IFMA) that takes into account the fatigue behavior of short cracks. This methodology estimates the fatigue crack propagation rate as a function of the difference between the applied driving force and the material threshold for crack propagation, function of crack length. Firstly, the proposed fracture mechanic method is introduced and compared with the traditional fracture mechanic approach, used mainly for fitness for purpose assessment of welded joints with cracks or other crack-like defects. Then, the method is used for several theoretical and parametric applications to show its ability to predict the influence of different mechanical, geometrical and microstructural parameters in the definition of the fatigue resistance of welded joints. The influence of plate thickness, initial crack length and reinforcement angle on fatigue strength of butt-welded joints has been analysed and results show good agreement with experimental trends. Finally, the method is applied to predict and analyze the fatigue behavior of butt welded and non-load-carrying transverse fillet welded joints, and estimated and experimental results are analysed and compared.  相似文献   

6.
Heavy components of ductile cast iron frequently exhibit metallurgical defects that behave like cracks under cyclic loading. Thus, in order to decide whether a given defect is permissible, it is important to establish the fatigue crack growth properties of the material. In this paper, results from a comprehensive study of ductile cast iron EN‐GJS‐400‐18‐LT have been reported. Growth rates of fatigue cracks ranging from a few tenths of a millimetre (‘short’ cracks) to several millimetres (‘long’ cracks) have been measured for load ratios R=?1, R= 0 and R= 0.5 using a highly sensitive potential‐drop technique. Short cracks were observed to grow faster than long cracks. The threshold stress intensity range, ΔKth, as a function of the load ratio was fitted to a simple crack closure model. Fatigue crack growth data were compared with data from other laboratories. Single plain fatigue tests at R=?1 and R= 0 were also carried out. Fracture toughness was measured at temperatures ranging from ?40 °C to room temperature.  相似文献   

7.
The growth of short fatigue cracks was investigated in an austempered ductile cast iron (wt% 3.6C, 2.5Si, 0.6Mn, 0.15Mo, 0.3Cu), austenitized at 870 °C and then austempered at 375 °C for 2 h. At stress amplitudes close to the fatigue limit endurance limit of 107 cycles, subcritical crack nuclei initiated at graphite nodules. The crack nucleus decelerated and arrested after propagating a short distance. The position of an arrested crack tip was characterized using an electron backscatter diffraction technique, demonstrating that short fatigue cracks in austempered ductile cast iron (ADI) can be arrested by boundaries such as those between ausferrite sheaves or packets and prior austenite grains. Refinement of the prior austenite grain size decreased the size of subcritical crack nuclei. It is proposed that the arrest and retardation of short crack nuclei are controlled by the austenite grain size and graphite nodule size. This determines the fatigue endurance limit.  相似文献   

8.
It is observed that the short fatigue cracks grow faster than long fatigue cracks at the same nominal driving force and even grow at stress intensity factor range below the threshold value for long cracks in titanium alloy materials. The anomalous behaviours of short cracks have a great influence on the accurate fatigue life prediction of submersible pressure hulls. Based on the unified fatigue life prediction method developed in the authors' group, a modified model for short crack propagation is proposed in this paper. The elastic–plastic behaviour of short cracks in the vicinity of crack tips is considered in the modified model. The model shows that the rate of crack propagation for very short cracks is determined by the range of cyclic stress rather than the range of the stress intensity factor controlling the long crack propagation and the threshold stress intensity factor range of short fatigue cracks is a function of crack length. The proposed model is used to calculate short crack propagation rate of different titanium alloys. The short crack propagation rates of Ti‐6Al‐4V and its corresponding fatigue lives are predicted under different stress ratios and different stress levels. The model is validated by comparing model prediction results with the experimental data.  相似文献   

9.
An investigation was carried out to examine the influence of austempering heat treatments and the resultant microstructure of austempered ductile cast iron, on the fatigue crack growth rate, fatigue threshold, and high-cycle fatigue strength of the material. Two different approaches were used to study the fatigue behavior of this relatively new material, that is, a traditional S-N curve approach for determination of fatigue strength and a fracture mechanics-based approach for determination of the fatigue threshold. Compact tension and cylindrical specimens prepared from alloyed nodular ductile cast iron were given three different austempering heat treatments to produce three different microstructures. The fatigue threshold and high-cycle fatigue behavior of these specimens were studied in room temperature ambient atmosphere. The results of the present investigation demonstrate that the fatigue threshold of the material increases with increase in volume fraction of carbon-saturated austenite. The fatigue strength of the material, on the other hand, was found to increase with decrease in austenitic grain size. The crack growth process in the material was a combination of ductile striations and microvoid coalescence, and crack propagation by connecting the graphite nodules along its path.  相似文献   

10.
The anomalous growth behavior of short fatigue cracks in a Ni-based superalloy is examined. Experimental and analytical work is presented which clearly demonstrates the break-down of linear elastic fracture mechanics (LEFM) in the “so-called” short crack regime. Short crack data only appear anomalous when correlated in terms of the stress intensity factor. When short and long crack data are analyzed in terms of a more valid driving force (e.g. strain energy density criteria), no anomalous short crack behavior is observed.  相似文献   

11.
An optimized microstructure of cast iron has been developed. In situ studies with the use of scanning electron microscopy have been made of the microprocesses of deformation and fracture in tension. The surface microstructure and the corresponding fracture surface and matching fracture were observed. The optimized nodular graphite-martensite interface, in combination with the high yield strength martensite shell, has been found to delay the initiation and propagation of interfacial cracks. Subsequent propagation and the formation of cast iron cracks is hindered by the ferrite-plus-martensite matrix. During crack propagation, shear deformation, the fracture of ligaments between the crack tip and the microcracks ahead, crack deflection, and bridging take place. With the use of these observations, it is possible to explain why cast iron with this optimized microstructure has excellent strength and toughness.  相似文献   

12.
ABSTRACT Short fatigue crack nuclei in austempered ductile cast iron have been studied using optical microscopy, scanning electron microscopy, atomic force microscopy and X‐ray microtomography and by electron backscatter diffraction analysis. Fatigue cracks nucleate at graphite nodules and shrinkage microporosity. The crack nuclei are arrested and retarded by barriers in the microstructure, by either blocking of slip at boundaries or owing to the requirement for tilt and twist of the stage I crystallographic crack at grain boundaries. These observations indicate that both the size of the defects, such as graphite nodules and microporosity, and the size of the prior austenite grains control the largest crack nucleus that can develop, and hence determine the component fatigue limit.  相似文献   

13.
The behaviour of small fatigue cracks has been studied in the Al---Li---Cu---Mg---Zr alloy 8090. It was found that the crack inclination normal to the surface of the specimen made crack deflections and kinking in the plane of the specimen surface irrelevant to the crack driving force. The low closure levels associated with small fatigue cracks reduce the effect of microstructure on crack growth but this does not affect the ability of ΔK (stress intensity factor range) to detect microstructural influences. The use of ΔJ (J-integral range) as a correlating parameter reduced the differences between the data for long and short fatigue cracks. However, there was no evidence that ΔJ was superior at identifying microstructural effects. Similarly the effect of the higher-order terms on the value of ΔK was found to be minor. It is concluded that the use of ΔK is not likely to bias the microstructural effects and so ΔK may be used when examining microstructural effects on small fatigue crack growth.  相似文献   

14.
PROPAGATION BEHAVIOUR OF SHORT FATIGUE CRACKS IN Q2N STEEL   总被引:1,自引:0,他引:1  
Abstract— The work described in this paper characterizes short fatigue crack growth behaviour of Q2N steel having a complex microstructure and designated for pressure vessel and offshore structure applications. Short and long fatigue crack growth tests for this steel were conducted under three point bend loading conditions. It was found that, in the initial stages of growth, short cracks propagate much faster than those of long cracks when correlated with the linear elastic fracture mechanics (LEFM) parameter Δ K. A period of crack growth retardation was observed at crack lengths of approx 50 μm. The theory of the interaction between short cracks and grain boundaries fails to predict the occurrence of this deceleration minima. A new short crack deceleration mechanism is proposed based on experimental observation. Observation of the characteristic behaviour of short cracks allowed the development of a short crack growth model based on microstructural fracture mechanics analyses.  相似文献   

15.
The fatigue behaviour of a nodular cast iron containing casting defects has been investigated in the high-cycle fatigue regime. In this paper, we propose a fatigue life assessment model for flawed materials based on a fracture mechanics approach which takes into account the position and size of the defect, short crack behaviour and the notch effect introduced by the defect. The fatigue behaviour of smooth samples, and long and short crack behaviour have been experimentally determined in order to identify the relevant mechanical parameters; these being introduced into the model. An experimental study has been made both in air and in vacuum in order to account for the position of the defect, noting that internal defects are supposed to be under vacuum conditions. Experimental results, which are based on a two-crack front-marking technique specially developed for this study, show that the propagation of natural cracks is controlled by the effective stress intensity factor in air as well as in vacuum. The K calculation for a short crack in the stress field of a notch is analysed using numerical elastic–plastic results. Comparison between experimental results and the computation of fatigue life for fatigue lives less than 106 cycles shows that the fatigue behaviour of nodular cast iron is controlled by a propagation process. The model proposed is thus relevant for fatigue lives less than 106 cycles so that the defect can be considered as a crack and the initiation stage neglected. Closer to the fatigue limit, this study shows that the initiation stage should be considered in the assessment of fatigue life of nodular cast iron, because a single macroscopic propagation assessment is not enough to describe the whole fatigue life. The defect cannot be considered as a pre-existent crack in the high-cycle fatigue range (>106 cycles), and the initiation stage that contains microcrack propagation around the defect should be evaluated when assessing the high-cycle fatigue life of nodular cast iron.  相似文献   

16.
Abstract— Initial fatigue crack propagation mechanisms at near threshold conditions were studied for four nickel-alloyed, powder-metallurgy (PM) steels. Fatigue fracture surfaces were obtained by testing smooth rectangular specimens at 30 Hz and under constant amplitude and zero mean stress conditions. Materials based on Distaloy AE were used in two densities, namely 7.15 and 7.45 g/cm3.
All the fracture surfaces were composed of three morphological regions (i) a macrocrack initiation region Rl where cracks propagated preferentially through particles (ii) a macrocrack growth region R2 and (iii) an unstable crack growth region R3 where cracks propagated preferentially between particles. Initial fatigue crack growth, in region R1, was controlled by the propagation of short cracks whose dimensions were comparable to the material microstructure. The subsequent fatigue crack growth in regions R2 and R3 was controlled by ductile rupture between microvoids. Transparticle fracture in region R1 was independent of pore distribution, while interparticle fracture in regions R2 and R3 was dependent on pore distribution.  相似文献   

17.
通过原位扫描电子显微镜(SEM)研究了粉末冶金制备的Cu/WCp复合材料的疲劳裂纹萌生和扩展行为,分析了颗粒和微观结构对Cu/WCp复合材料疲劳裂纹萌生和早期扩展行为的影响。结果表明:疲劳微裂纹萌生于WCp颗粒和基体Cu的界面;微裂纹之间相互连接并形成主裂纹,当主裂纹和颗粒相遇时裂纹沿着颗粒界面扩展。在低应力强度因子幅ΔK区域疲劳小裂纹具有明显的"异常现象",并占据了全寿命的71%左右。疲劳小裂纹的早期扩展阶段易受局部微观结构和颗粒WCp的影响,扩展速率波动性较大,随机性较强;当小裂纹长度超过150μm时,裂纹扩展加快直至试样快速断裂。裂纹偏折、分叉和塑性尾迹降低了疲劳裂纹扩展速率,而颗粒界面脱粘则提高了复合材料的疲劳裂纹扩展速率。通过数值模拟也可以发现颗粒脱粘增大了材料的疲劳扩展驱动力,从而提高了疲劳裂纹扩展速率。  相似文献   

18.
The quasi‐static and fatigue behavior after impact of the TiAl alloy TNBV3B produced via three different processing routes—cast, forged and extruded—has been studied on flat and airfoil‐like shaped specimens making use of ballistic impact experiments. For impacts resulting in cracks the behavior can be described using a linear‐elastic fracture mechanics approach. The residual strength is described on the basis of the fracture toughness. The residual fatigue strength of impact‐cracked specimens is estimated on the basis of the threshold for crack growth of the TNBV3B alloys. However, when there is no visible crack or when the crack length is below the size of the deformed impact area, residual stresses and micro‐damage play a dominating role making the linear‐elastic fracture mechanics approach invalid. The deformation hardened zone in TiAl has been studied making use of micro‐hardness tests showing their extension and the degrees of deformation for different impact energies.  相似文献   

19.
20.
A MICRO-MECHANICS ANALYSIS FOR SHORT FATIGUE CRACK GROWTH   总被引:1,自引:0,他引:1  
Crack initiation and early growth of fatigue cracks in a fully annealed 0.4% carbon steel was investigated using plastic replicas and torsion loading. In a structure consisting of a 70/30 mixture of pearlite and ferrite the cracks are seen to develop and grow initially along slip bands in the ferrite phase. Energetic considerations lead to the formulation of a model which, while characterizing short crack growth rate, also considers those microstructural variables relevant to fatigue crack initiation and early crack growth. The driving force for crack growth is provided by the energy of the slip band; correspondingly crack growth per cycle is proportional to the strength of the slip band. In the short fatigue crack region, cracks grow initially at a fast rate but deceleration occurs quickly and, depending on the stress level, they either arrest or are temporarily halted at a critical length. This critical length is shown to coincide with the value of the threshold length for crack growth under LEFM conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号