首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Betaine aldehyde oxidation by spinach chloroplasts   总被引:30,自引:7,他引:23       下载免费PDF全文
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. Both oxidation reactions are carried out by isolated spinach (Spinacia oleracea L.) chloroplasts in darkness and are promoted by light. The mechanism of betaine aldehyde oxidation was investigated with subcellular fractions from spinach leaf protoplasts. The chloroplast stromal fraction contained a specific pyridine nucleotide-dependent betaine aldehyde dehydrogenase (about 150 to 250 nanomoles per milligram chlorophyll per hour) which migrated as one isozyme on native polyacrylamide gels stained for enzyme activity. The cytosol fraction contained a minor isozyme of betaine aldehyde dehydrogenase. Leaves of pea (Pisum sativum L.), a species that lacks betaine, had no betaine aldehyde dehydrogenase isozymes. The specific activity of betaine aldehyde dehydrogenase rose three-fold in spinach plants grown at 300 millimolar NaCl; both isozymes contributed to the increase. Stimulation of betaine aldehyde oxidation in illuminated spinach chloroplasts was due to a thylakoid activity which was sensitive to catalase; this activity occurred in pea as well as spinach, and so appears to be artifactual. We conclude that in vivo, betaine aldehyde is oxidized in both darkness and light by the dehydrogenase isozymes, although some flux via a light-dependent, H2O2-mediated reaction cannot be ruled out.  相似文献   

2.
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. The pathway is chloroplastic; the first step has been shown in isolated spinach (Spinacia oleracea L.) chloroplasts to be O2- and light-dependent, the role of light being to provide reducing power (P Weigel, EA Weretilnyk, AD Hanson 1988 Plant Physiol 86: 54-60). Here, we report use of in vivo18O- and 2H-labeling in conjunction with fast atom bombardment mass spectrometry to test for two hypothetical choline-oxidizing reactions that would explain the observed requirements for O2 and reductant: a desaturase or an oxygenase. Simple syntheses for 2H3-choline, 2H3, 18O-choline, and 2H3, 18O-betaine are given. A desaturase mechanism was sought by giving choline deuterated at the 2-carbon, or choline unlabeled at this position together with 2H2O and by analyzing newly synthesized betaine. About 15% of the 2H at C-2 was lost during oxidation of choline to betaine, and about 10% of the betaine made in the presence of 50% 2H2O was monodeuterated. These small effects are more consistent with chemical exchange than with a desaturase, because 10 to 15% losses of 2H from the C-2 position also occurred if choline was converted to betaine by a purified bacterial choline oxidase. To test for an oxygenase, the incorporation of 18O from 18O2 into newly synthesized betaine was compared with that from 18O-labeled choline, in light and darkness. Incorporation of 18O from 18O-choline was readily detectable and varied from about 15 to 50% of the theoretical maximum value; the 18O losses were attributable to exchange of the intermediate betaine aldehyde with water. In darkness, incorporation of 18O from 18O2 approached that from 18O-choline, but in the light was severalfold lower, presumably due to isotopic dilution by photosynthetic 16O2. These data indicate that the chloroplast choline-oxidizing enzyme is an oxygenase.  相似文献   

3.
Choline oxidation by intact spinach chloroplasts   总被引:4,自引:3,他引:1       下载免费PDF全文
Plants synthesize betaine by a two-step oxidation of choline (choline → betaine aldehyde → betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness (AD Hanson et al. 1985 Proc Natl Acad Sci USA 82: 3678-3682). We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers nor the Calvin cycle inhibitor glyceraldehyde greatly affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO2 fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.  相似文献   

4.
Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline → betaine aldehyde → GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [14C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [14C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.  相似文献   

5.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

6.
An enzyme able to reduce cytochrome c via ferredoxin in the presence of NADPH, was isolated, purified from radish (Raphanus sativus var acanthiformis cultivar miyashige) roots and characterized. The enzyme was purified by DEAE-cellulose, Blue-Cellulofine, Ferredoxin-Sepharose 4B, and Sephadex G-100 column chromatography. Molecular mass of the enzyme was estimated to be 33,000 and 35,000 daltons by Sephadex G-100 gel filtration and SDS-PAGE, respectively. Its absorption spectrum suggested that the enzyme contains flavin as a prosthetic group. The Km values for NADPH and ferredoxin were calculated to be 9.2 and 1.2 micromolar, respectively. The enzyme required NADPH and did not use NADH as an electron donor. The optimal pH was 8.4. The enzyme also catalyzed the photoreduction of NADP+ in the spinach leaf thylakoid membranes depleted of ferredoxin and ferredoxin-NADP+ oxidoreductase. The effect of NaCl and MgCl2 concentration on the activity and amino acid composition of the enzyme were demonstrated. The results suggest that the enzyme is similar to ferredoxin-NADP+ oxidoreductase from chloroplasts and cyanobacteria and is the key enzyme catalyzing the electron transport between NADPH, generated by the pentose phosphate pathway, and ferredoxin in plastids of plant heterotrophic tissues.  相似文献   

7.
Kow YW  Gibbs M 《Plant physiology》1982,69(1):179-186
A particulate preparation (MgP) capable of photosynthetic CO2 assimilation without the addition of stromal protein was obtained by rupturing whole spinach (Spinacia oleracea var. America) chloroplasts in 15 millimolar MgCl2 buffered with Tricine at pH 8.5. This CO2 assimilation was dependent upon light, inorganic phosphate, ferredoxin, ADP, NAD or NADP, and primer. Excepting glycolate, the products of CO2 fixation by MgP were similar to those found with whole chloroplasts.  相似文献   

8.
Addition of exogenous Mg2+ (2 millimolar) to illuminated intact spinach (Spinacia oleracea L.) chloroplasts caused acidification of the stroma and a 20% decrease in stromal K+. Addition of K+ (10-50 millimolar) reversed both stromal acidification and K+ efflux from the chloroplast caused by Mg2+. These data suggested that Mg2+ induced reversible H+/K+ fluxes across the chloroplast envelope. Ca2+ and Mn2+ (2 millimolar) were as effective as 4 millimolar Mg2+ in causing K+ efflux from chloroplasts and inhibition of O2 evolution. In contrast, 10 millimolar Ba2+ induced only a small amount of inhibition. The lack of strong inhibition by Ba2+ indicated that the effects of divalent cations such as Mg2+ cannot be attributed to generalized electrostatic interactions of the cation with the chloroplast envelope. With the chloroplasts used in this study, stromal acidification caused by 2 millimolar Mg2+ was small (0.07 to 0.15 pH units), but sufficient to account for the inhibition of O2 evolution (43%) induced by Mg2+.  相似文献   

9.
Sicher RC 《Plant physiology》1984,74(4):962-966
The light-dependent accumulation of radioactively labeled inorganic carbon in isolated spinach (Spinacia oleracea L.) chloroplasts was determined by silicone oil filtering centrifugation. Intact chloroplasts, dark-incubated 60 seconds at pH 7.6 and 23°C with 0.5 millimolar sodium bicarbonate, contained 0.5 to 1.0 millimolar internal inorganic carbon. The stromal pool of inorganic carbon increased 5- to 7-fold after 2 to 3 minutes of light. The saturated internal bicarbonate concentration of illuminated spinach chloroplasts was 10- to 20-fold greater than that of the external medium. This ratio decreased at lower temperatures and with increasing external bicarbonate. Over one-half the inorganic carbon found in intact spinach chloroplasts after 2 minutes of light was retained during a subsequent 3-minute dark incubation at 5°C. Calculations of light-induced stromal alkalization based on the uptake of radioactively labeled bicarbonate were 0.4 to 0.5 pH units less than measurements performed with [14C]dimethyloxazolidine-dione. About one-third of the binding sites on the enzyme ribulose 1,5-bisphosphate carboxylase were radiolabeled when the enzyme was activated in situ and 14CO2 bound to the activator site was trapped in the presence of carboxypentitol bisphosphates. Deleting orthophosphate from the incubation medium eliminated inorganic carbon accumulation in the stroma. Thus, bicarbonate ion distribution across the chloroplast envelope was not strictly pH dependent as predicted by the Henderson-Hasselbach formula. This finding is potentially explained by the presence of bound CO2 in the chloroplast.  相似文献   

10.
Like other chenopods, sugarbeets (Beta vulgaris L. cv Great Western D-2) accumulate glycine betaine when salinized; this may be an adaptive response to stress. The pathway of betaine synthesis in leaves of salinized (150-200 millimolar NaCl) sugarbeet plants was investigated by supplying [14C]formate, phosphoryl[14C]monomethylethanolamine ([14C][unk] MME) or phosphoryl[14C]choline ([14C][unk] choline) to leaf discs and following 14C incorporation into prospective intermediates. The 14C kinetic data were used to develop a computer model of the betaine pathway.

When [14C]formate was fed, [unk] MME, phosphoryldimethylethanolamine ([unk] DME) and [unk] choline were the most prominent methylated products at short labeling times, after which 14C appeared in free choline and in betaine. Phosphatidylcholine labeled more slowly than [unk] choline, choline, and betaine, and behaved as a minor end product. Very little 14C entered the free methylethanolamines. When [14C][unk] MME was supplied, a small amount was hydrolyzed to the free base but the major fate was conversion to [unk] DME, [unk] choline, free choline, and betaine; label also accumulated slowly in phosphatidylcholine. Label from supplied [14C][unk] choline entered choline and betaine rapidly, while phosphatidylcholine labeled only slowly and to a small extent.

These results are consistent with the pathway [unk] MME →[unk] DME → [unk] choline → choline → → betaine, with a minor side branch leading from [unk] choline into phosphatidylcholine. This contrasts markedly (a) with the pathway of stress-induced choline and betaine synthesis in barley, in which phosphatidylcholine apparently acts as an intermediate (Hitz, Rhodes, Hanson 1981, Plant Physiol 68: 814-822); (b) with choline biogenesis in mammalian liver and microorganisms. Computer modeling of the experimental data pointed strongly to regulation at the [unk] choline → choline step, and also indicated that the rate of [unk] choline synthesis is subject to feedback inhibition by [unk] choline.

  相似文献   

11.
Glycerate kinase (EC 2.7.1.31) from maize (Zea mays) leaves was shown to be regulated by light/dark transition. The enzyme more than doubled in activity after either the leaves or isolated mesophyll chloroplasts were illuminated with white light for 10 minutes. Rate of inactivation in the dark was faster in leaves than in the isolated chloroplast fraction. The stimulating effect of light could be mimicked in crude preparations by addition of 10 or 50 millimolar dithiothreitol or 100 millimolar 2-mercaptoethanol. The thiol treatment resulted in 8- to 10-fold activation of glycerate kinase, with the highest rates in the range of 27 to 30 micromoles per mg chlorophyll per hour. Activation was not accompanied by any changes in the apparent Mr value of glycerate kinase as determined by gel filtration (Mr = 47,000). In contrast to maize glycerate kinase, the enzyme from spinach was not affected by either light or thiol exposure.

Partially purified maize glycerate kinase was activated up to 3-fold upon incubation with a mixture of spinach thioredoxins m and f and 5 millimolar dithiothreitol. The thioredoxin and dithiothreitol-treated glycerate kinase could be further stimulated by addition of 2.5 millimolar ATP. The results suggest that glycerate kinase from maize leaves is capable of photoactivation by the ferredoxin/thioredoxin system. The synergistic effect of ATP and thioredoxins in activation of the enzyme supports the earlier expressed view that the ferredoxin/thioredoxin system functions jointly with effector metabolites in light-mediated regulation during photosynthesis.

  相似文献   

12.
Mechanism of glycolate transport in spinach leaf chloroplasts   总被引:5,自引:4,他引:1       下载免费PDF全文
Takabe T  Akazawa T 《Plant physiology》1981,68(5):1093-1097
The incorporation of 14CO2 into glycolate by intact spinach leaf (Spinacia oleracea L. var. Kyoho) chloroplasts exposed to 14CO2 (NaH14CO3, 1 millimolar) in the light was determined as a function of O2 concentrations in the reaction media. A hyperbolic saturation curve was obtained, apparent Km (O2) of 0.28 millimolar, indicating that glycolate is produced predominantly by ribulose-1,5-bisphosphate carboxylase/oxygenase. A concentration gradient of glycolate was invariably observed between chloroplast stroma and the outside media surrounding chloroplasts during photosynthetic 14CO2 fixation under an O2 atmosphere.  相似文献   

13.
Sicher RC 《Plant physiology》1989,89(2):557-563
Phosphoglucomutase (PGM) activity was measured in spinach (Spinacia oleracea L.) chloroplasts. Initial enzyme activity in a chloroplast lysate was 5 to 10% of total activity measured with 1 micromolar glucose 1,6-bisphosphate (Glc 1,6-P2) in the assay. Initial PGM activity increased 2- to 3-fold when chloroplasts were illuminated for 10 minutes prior to enzyme measurement and then decreased slowly in the dark. Measurements of total enzyme activity were unchanged by prior light treatment. Initial PGM activity from light treated chloroplasts was sufficient to account for in vivo rates of starch synthesis. Changes in PGM activity were affected by stromal pH and orthophosphate concentration. Photosynthetic inhibitors, dl-glyceraldehyde, glycolaldehyde, and glyoxylate, decreased and 3-phosphoglyceric acid increased light induced changes of PGM activity. Dark preincubation of chloroplasts with 10 millimolar dithiothreitol had no effect upon initial PGM activity, suggesting that light effects did not involve a sulfhydryl mechanism. Hexose monophosphate levels increased in illuminated chloroplasts. Activation of PGM in a chloroplast lysate by Glc 1,6-P2 was maximal between pH 7.5 and 8.5. Stromal concentrations of Glc 1,6-P2 were between 20 and 30 micromolar for both light and dark incubated chloroplasts and these levels should saturate PGM activity. Light dependent alterations of enzyme activity may be due to changes of phosphorylated PGM levels in the stroma or are the result of changes in residual activity by the dephosphorylated form of the enzyme. The above results indicate that PGM activity in spinach chloroplasts may be regulated by light, stromal pH, and Glc 1,6-P2 concentration.  相似文献   

14.
Intact spinach (Spinacia oleracea) chloroplasts, pulse-labeled with [14C]acetate, desaturate newly formed fatty acids as ester groups of monogalactosyl diacylglycerol in a subsequent chase in the dark. Rupture of pulse-labeled chloroplasts by addition of a detergent solution 3-([3-cholamidopropyl]dimethylammonio)-1-propane sulfonate preserves part of this desaturation activity. Direct addition of different free fatty acids together with appropriate cofactors to detergent-ruptured chloroplasts results in fatty acid labeling of monogalactosyl diacylglycerol. During subsequent incubation these lipid-linked fatty acids are desaturated, i.e. 18:1 to 18:2 and 18:3 and to a small extent also 16:0 to 16:3. The formation of 18:2 was also observed after incorporation of 18:1 into sulfolipid and phosphatidyl choline. Density gradient centrifugation separated a membrane fraction from detergent-ruptured chloroplasts which in the presence of appropriate cofactors incorporated 18:1 and 18:2 into the above-mentioned lipids. In the light, desaturation was dependent on added ferredoxin, whereas in the dark, in addition to ferredoxin NAD(P)H was also required. Preliminary evidence for the involvement of membrane-bound ferredoxin:NADP oxidoreductase (FNR) as a third component of desaturation in the dark was obtained by inhibitor studies including antibodies against FNR. Desaturation of lipid-bound 18:1 and 18:2 resembles stearoyl-ACP desaturation with respect to its requirement of reduced ferredoxin and oxygen.  相似文献   

15.
The effects of phosphoenolpyruvate (PEP), inorganic phosphate (Pi), and ATP on 3-phosphoglycerate (PGA)-dependent O2 evolution by chloroplasts of Digitaria sanguinalis (L.) Scop. (crabgrass) were evaluated relative to possible mechanisms of PEP transport by the C4 mesophyll chloroplast. Crude and Percoll purified chloroplast preparations exhibited rates of PGA-dependent O2 evolution in the range of 90 to 135 micromoles O2 per milligram chlorophyll per hour, and up to 180 micromoles O2 per milligram chlorophyll per hour at optimal Pi concentrations (approximately 0.2 millimolar at 9 millimolar PGA). Higher concentrations of Pi were inhibitory. PEP inhibited O2 evolution (up to 70%) in both chloroplast preparations when the PEP to PGA ratio was high (i.e. 9 millimolar PEP to 0.36 millimolar PGA). Usually no inhibition was seen when the PEP to PGA ratio was less than 2. PEP acted as a competitive inhibitor and, at a concentration of 9 millimolar, increased the apparent Km (PGA) from 0.15 to 0.53 millimolar in Percoll purified chloroplasts. A low concentration of PGA and high ratio of PEP to PGA, which are considered unphysiological, were required to detect any inhibition of O2 evolution by PEP. Similar results were obtained from crude versus Percoll purified preparations. Neither the addition of Pi nor ATP could overcome PEP inhibition. As PEP inhibition was competitive with respect to PGA concentration, and as addition of ATP or Pi could not prevent PEP inhibition of PGA-dependent O2 evolution, the inhibition was not due to PEP exchange of adenylates or Pi out of the chloroplast. Analysis of the effect of Pi and PEP, separately and in combination, on PGA-dependent O2 evolution suggests interactions between PEP, Pi, and PGA on the same translocator in the C4 mesophyll chloroplast. C3 spinach chloroplasts were also found to be sensitive to PEP, but to a lesser extent than crabgrass chloroplasts. The apparent Ki values (PEP) were 3 and 21 millimolar for crabgrass and spinach, respectively.  相似文献   

16.
Yu J  Woo KC 《Plant physiology》1988,88(4):1048-1054
The transport of l-[14C]glutamine in oat (Avena sativa L.) and spinach (Spinacia oleracea L.) chloroplasts was studied by a conventional single-layer and a newly developed stable double-layer silicone oil filtering system. [14C]Glutamine was actively transported into oat chloroplasts against a concentration gradient. Metabolite uptake was greatly affected by the endogenous dicarboxylate pools, which could be easily changed by preloading the chloroplast with specific exogenous substrate. Glutamine uptake was decreased by 44 to 75% in oat chloroplasts preloaded with malate, 2-oxoglutarate (2-OG), and aspartate, but increased by 52% in chloroplasts preloaded with l-glutamate. On the other hand, the uptake of the other four dicarboxylates was decreased by 47 to 79% in chloroplasts preloaded with glutamine. In glutamine-preloaded chloroplasts the uptake of glutamine was inhibited only by l-glutamate. The observed inhibition by l-glutamate was competitive with an apparent Ki value of 32.1 millimolar in oat and 6.7 millimolar in spinach chloroplasts. This study indicates that there are two components involved in glutamine transport in chloroplasts. The major component was mediated via a specific glutamine translocator. It was specific for glutamine and did not transport other dicarboxylates except l-glutamate. A K0.5 value of 1.25 millimolar and Vmax of 45.5 micromoles per milligram of chlorophyll per hour were determined for the glutamine translocator in oat chloroplasts. The respective values were 1.0 millimolar and 16.7 micromoles per milligram of chlorophyll per hour in spinach chloroplasts. A three translocator model, involving the glutamine, dicarboxylate, and 2-OG translocators, is proposed for the reassimilation of photorespiratory NH3 in chloroplasts of C3 species. In this three-translocator model the additional transport of glutamine into the chloroplast is coupled to the export of glutamate via the glutamine translocator. This is an extension of the two-translocator model, involving the dicarboxylate and 2-OG translocators, proposed for spinach chloroplasts, (KC Woo, UI Flügge, HW Heldt 1987 Plant Physiol 84: 624-632).  相似文献   

17.
Phosphofructokinase has been partially purified from spinach (Spinacia oleracea) chloroplasts and studied from the standpoint of light/dark regulation. At concentrations reported to occur physiologically, NADPH effected a sharp inhibition of the enzyme by: (a) lowering its affinity (increasing the apparent Km) for both of its substrates, ATP and fructose 6-phosphate; and (b) lowering its Vmax. Inhibition by NADPH was independent of pH and was observed both at pH 7.9 (pH of chloroplast stroma in the light) and pH 7.0 (stromal pH in the dark). The results are consistent with the conclusion that NADPH provides a mechanism for linking light to the modulation of phosphofructokinase activity and thereby to the regulation of glycolysis in chloroplasts.  相似文献   

18.
Betaine aldehyde dehydrogenase from the human opportunistic pathogen Pseudomonas aeruginosa (PaBADH) catalyzes the irreversible, NAD(P)+-dependent oxidation of betaine aldehyde, producing glycine betaine, an osmoprotectant. PaBADH participates in the catabolism of choline and likely in the defense against the osmotic and oxidative stresses to which the bacterium is exposed when infecting human tissues. Given that choline or choline precursors are abundant in infected tissues, PaBADH is a potential drug target because its inhibition will lead to the build up of the toxic betaine aldehyde inside bacterial cells. We tested the thiol reagents, disulfiram (DSF) and five DSF metabolites—diethyldithiocarbamic acid (DDC), S-methyl-N,N-diethyldithiocarbamoyl sulfoxide (MeDDTC-SO) and sulfone (MeDDTC-SO2), and S-methyl-N,N-diethylthiocarbamoyl sulfoxide (MeDTC-SO) and sulfone (MeDTC-SO2)—as inhibitors of PaBADH and P. aeruginosa growth. As in vitro PaBADH inhibitors, their order of potency was: MeDDTC-SO2 > DSF > MeDTC-SO2 > MeDDTC-SO > MeDTC-SO. DDC did not inactivate the enzyme. PaBADH inactivation by DSF metabolites (i) was not affected by NAD(P)+, (ii) could not be reverted by dithiothreitol, and (iii) did not affect the quaternary structure of the enzyme. Of the DSF metabolites tested, MeDTC-SO2 and MeDDTC-SO produced significant in situ PaBADH inactivation and arrest of P. aeruginosa growth in choline containing media, in which the expression of PaBADH is induced. They had no effect in media lacking choline, indicating that PaBADH is their main intracellular target, and that arrest of growth is due to accumulation of betaine aldehyde. The in vitro and in situ kinetics of enzyme inactivation by these two compounds were very similar, indicating no restriction on their uptake by the cells. MeDDTC-SO2 and DSF have no inhibitory effects in situ, probably because their high reactivity towards intracellular nonessential thiols causes their depletion. Our results support that PaBADH is a promising target to treat P. aeruginosa infections, and that some DSF metabolites might be of help in this aim.  相似文献   

19.
20.
Photosynthetic CO2-fixation in isolated pea (Pisum sativum L., cv Little Marvel) chloroplasts during induction is markedly inhibited by 0.4 millimolar sulfite. Sulfate at the same concentration has almost no effect. The 14CO2-fixation pattern indicates that the primary effect of sulfite is inhibition of the reaction catalyzed by ribulose bisphosphate carboxylase and a stimulation of export of intermediates out of the chloroplasts. Inhibition of light modulation of stromal enzyme activity does not appear to account for the toxicity of SO2 in this Pisum variety. Arsenite at 0.2 millimolar concentrations inhibits light activation and inhibits photosynthetic CO2 fixation. The 14CO2-fixation pattern indicates that the primary effect of arsenite is inhibition of light activation of reductive pentose phosphate pathway enzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号