首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Central Fujian Rift is another new and important volcanogenic massive sulfide Pb-Znpolymetallic metailogenetic belt. In order to find out the material genesis and mineralization period ofMeixian-type Pb-Zn-Ag deposits, S and Pb isotope analysis and isotope geochronology of ores and wallrocks for five major deposits are discussed. It is concluded that the composition of sulfur isotope fromsulfide ore vary slightly in different deposits and the mean value is close to zero with the δ34S rangingfrom -3.5‰ to 5.6‰ averaging at 2.0‰, which indicates that the sulfur might originate from magmaor possibly erupted directly from volcano or was leached from ore-hosted volcanic rock. The lead fromores in most deposits displays radioactive genesis character (206Pb/204Pb>18.140, 207Tb/204Pb>15.584,208Pb/204Pb>38.569) and lead isotope values of ores are higher than those of wall rocks, which indicatesthat the lead was likely leached from the ore-hosted volcanic rocks. Based on isotope data, twosignificant Pb-Zn metallogenesis are delineated, which are Mid- and Late-Proterozoic sedimentaryexhalative metallogenesis (The single zircon U-Pb, Sm-Nd isochronal and Ar-Ar dating ages of ore-hosted wall rocks are calculated to be among 933-1788 Ma.) and Yanshanian magmatic hydrothermalsuperimposed and alternated metallogenesis (intrusive SHRIMP zircon U-Pb and Rb-Sr isochronalages between 127-154 Ma).  相似文献   

2.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

3.
The Sawuershan region, one of the important gold metallogenic belts of Xinjiang, is located in the western part of the Kalatongke island arc zone of north Xinjiang, NW China. There are two gold deposits in mining, namely the Kuoerzhenkuola and the Buerkesidai deposits. Gold ores at the Kuoerzhenkuola deposit occur within Carboniferous andesite and volcanic breccias in the form of gold‐bearing quartz–pyrite veins and veinlet groups containing native gold, electrum, pyrite, pyrrhotite and chalcopyrite. Gold ores at the Buerkesidai deposit occur within Carboniferous tuffaceous siltstones in the form of gold‐bearing quartz veinlet groups and altered rocks, with electrum, pyrite and arsenopyrite as major metallic minerals. Both gold deposits are hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite–sericite zone and an outer chlorite–calcite–epidote zone between orebodies and wall rocks. δ34S values (0.3–1.3‰) of pyrite of ores from Kuoerzhenkuola deposit are similar to those (0.4–2.9‰) of pyrite of ores from Buerkesidai deposit. δ34S values (1.1–2.8‰) of pyrite from altered rocks are similar to δ34S values of magmatic or igneous sulfide sulfur, but higher than those from ores. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb data of sulfide from ores range within 17.72–18.56, 15.34–15.61, and 37.21–38.28, respectively. These sulfur and lead isotope compositions imply that ore‐forming materials might originate from multiple, mainly deep sources. He and Ar isotope study on fluid inclusions of pyrites from ores of Kuoerzhenkuola and Buerkesidai gold deposits produces 40Ar/36Ar and 3He/4He ratios in the range of 282–525 and 0.6–9.4 R/Ra, respectively, indicating a mixed source of deep‐seated magmatic water (mantle fluid) and shallower meteoric water. In terms of tectonic setting, the gold deposits in the Sawuershan region can be interpreted as epithermal. These formations resulted from a combination of protracted volcanic activity, hydrothermal fluid mixing, and a structural setting favoring gold deposition. Fluid mixing was possibly the key factor resulting in Au deposition in the gold deposits in Sawuershan region.  相似文献   

4.
The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformably in low-grade metamorphic volcano-sedimentary rock series with well-developed Na-rich hydrothermal sedimentary rocks and typical hydrothermal sedimentary ore fabrics. Fluid inclusions and isotopic geochemistry studies suggest that cobalt mineralizing fluid is dominated by NaCl-H2O system, accompanied by NaCl-CO2-H2O-N2 system responsible for gold mineralization. Massive, banded and disseminated pyrite ores have similar compositions of He and Ar isotopes from the mineralizing fluid, with 3He/4He range between 0.10 to 0.31Ra (averaging 0.21Ra), and 40Ar/36Ar between 302 and 569 (averaging 373), which reflects that Co mineralizing fluids derived dominantly from meteoric water deeply circulating. δ34S values of pyrite approaches to zero (δ34S ranging from ?4.5‰ to +1.5‰, centering around ?1.8‰ to ?0.2‰), reflecting its deep source. Ore lead is characterized by distinctly high radiogenesis, with 206Pb/204Pb>19.279, 207Pb/204Pb>15.691 and 208Pb/204Pb>39.627, and its values show an increase trend from country rocks, regional Paleozoic volcanic rocks to ores. This may have suggested that high radiogentic ore Pb derived mainly from country rocks by leaching meteoric water-dominated hydrothermal fluid during its circulation at depth. Cobalt occurs mainly in sulfide phase (such as pyrite), but cobalt enrichment, and presence and increasing contents of Co-bearing minerals have a positive correlation with metamorphic degree. The Tuolugou deposit and other typical strata-bound Co-Cu-Au deposits have striking similarities in the geological features and metallogenic pattern of primary cobalt. All of them are syngenetic hydrothermal exhalative sedimentation in origin.  相似文献   

5.
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ~(34)S_(CDT) values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(~(206)Pb/~(204)Pb = 17.59225-18.56354, average 18.32020; ~(207)Pb/~(204)Pb =15.51770-15.69381, average 15.66217; ~(208)Pb/~(204)Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(~(206)Pb/~(204)Pb= 18.10678-18.26293, average 18.21158; ~(207)Pb/~(204)Pb =15.63196-15.68188, average 15.65345; ~(208)Pb/~(204)Pb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.  相似文献   

6.
《International Geology Review》2012,54(13):1478-1507
The Central and Eastern Taurides contain numerous carbonate-hosted Pb–Zn deposits, mainly in Devonian and Permian dolomitized reefal–stramatolitic limestones, and in massive Jurassic limestones. We present and compare new fluid inclusion and isotopic data from these ore deposits, and propose for the first time a Mississippi Valley-type (MVT) mode of origin for them.

Fluid inclusion studies reveal that the ore fluids were highly saline (13–26% NaCl equiv.), chloride-rich (CaCl2) brines, and have average homogenization temperatures of 112°C, 174.5°C, and 211°C for the Celal Da?, Delikkaya, and Ayrakl? deposits, respectively. Furthermore, the δ34S values of carbonate-hosted Pb–Zn deposits in the Central and Eastern Taurides vary between –5.4‰ and?+13.70‰. This indicates a possible source of sulphur from both organic compounds and crustal materials. In contrast, stable sulphur isotope data (average δ34S –0.15‰) for the Çad?rkaya deposit, which is related to a late Eocene–Oligocene (?) granodioritic intrusion, indicates a magmatic source. The lead isotope ratios of galena for all investigated deposits are heterogeneous. In particular, with the exception of the Suçat? district, all deposits in the Eastern (Delikkaya, Ayrakl?, Denizovas?, Çad?rkaya) and Central (Katranba??, Küçüksu) Taurides have high radiogenic lead isotope values (206Pb/204Pb between 19.058 and 18.622; 207Pb/204Pb between 16.058 and 15.568; and 208Pb/204Pb between 39.869 and 38.748), typical of the upper continental crust and orogenic belts.

Fluid inclusion, stable sulphur, and radiogenic lead isotope studies indicate that carbonate-hosted metal deposits in the Eastern (except for the Çad?rkaya deposit) and the Central Taurides are similar to MVT Pb–Zn deposits described elsewhere. The primary MVT deposits are associated with the Late Cretaceous–Palaeocene closure of the Tethyan Ocean, and formed during the transition from an extensional to a compressional regime. Palaeogene nappes that typically limit the exposure of ore bodies indicate a pre-Palaeocene age of ore formation. Host rock lithology, ore mineralogy, fluid inclusion, and sulphur?+?lead isotope data indicate that the metals were most probably leached from a crustal source such as clastic rocks or a crystalline massif, and transported by chloride-rich hydrothermal solutions to the site of deposition. Localization of the ore deposits on autochthonous basement highs indicates long-term basinal fluid migration, characteristic of MVT depositional processes. The primary MVT ores were oxidized in the Miocene, resulting in deposition of Zn-carbonate and Pb-sulphate–carbonate during karstification. The ores underwent multiple cycles of oxidation and, in places, were re-deposited to form clastic deposits. Modified deposits resemble the ‘wall-rock replacement’ and the ‘residual and karst fill’ of non-sulphide zinc deposits and are predominantly composed of smithsonite.  相似文献   

7.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

8.
The Chitudian Zn‐Pb ore deposit, Luanchuan, Henan province, was recently discovered in the southern margin of the North China Craton. The Zn‐Pb orebodies are hosted in the Proterozoic Guandaokou and Luanchuan Groups, occurring as veins in interbedding fracture zones mainly in a WNW‐ and partially in a NS‐direction. The Zn‐Pb ores are characterized by banded, massive, and breccia structures, coarse crystal grains, and a simple mineral composition mainly of galena, sphalerite, pyrite, quartz, dolomite, and calcite. In addition to the vein type orebodies, there are Mo‐ and Zn‐bearing skarn orebodies in the northwest of the Chitudian ore field. Four types of primary fluid inclusions in quartz and calcite were recognized in the Chitudian Zn‐Pb ores, including aqueous, aqueous‐CO2, daughter‐mineral‐bearing aqueous, and daughter‐mineral‐bearing aqueous‐CO2 inclusions, with aqueous inclusion being most common. The homogenization temperatures of the fluid inclusions from the main mineralization stage are from 290°C to 340°C, and the salinities mainly from 3.7 to 14.8 wt% NaCl equivalent. In addition to CO2, CH4 and H2S were detected in the vapor phase and HS in the liquid phase of the fluid inclusions by Laser Raman spectroscopy. The δ34SV‐CDT values of ore sulfides from the Chitudian deposit range from ?0.32‰ to 8.30‰, and show two modal peaks in the histogram, one from 1‰ to 4‰, and the other from 5‰ to 7‰. The former peak is similar to that of porphyry‐type Mo‐W deposits in the area, whereas the latter is relatively close to the sulfur in the strata. The ore sulfur may have been derived from both the magma and the strata. The Pb‐isotopic compositions of the ore minerals from Chitudian, with 206Pb/204Pb from 17.005 to l7.953, 207Pb/204Pb from 15.414 to 15.587, and 208Pb/204Pb from 37.948 to 39.036, are similar to those of Mesozoic porphyries in the Chitudian ore field, suggesting that the ore‐forming metals were mainly derived from the Mesozoic magmatic intrusions. The Chitudian Zn‐Pb deposit is interpreted to be a distal hydrothermal vein‐type deposit, which was genetically related to the proximal, skarn‐type Mo ore deposits in the region.  相似文献   

9.
The Yinkeng orefield in Yudu County, Jiangxi Province, SE China, is a zone of concentrated Au-Ag-Pb-Zn-Cu-Mn polymetallic ores. Based on summing up basic geology and ore geology of the orefield, the polymetallic deposits in the orefield have been divided into seven major substyles according to their occurring positions and control factors. The ore-forming fluid inclusion styles in the orefield include those of two-phase fluid, liquid CO2-bearing three-phase and daughter mineral-bearing multi-phase. The homogenization temperatures range from 382o to 122oC, falling into five clusters of 370o to 390o, 300o to 360o, 230o to 300o, 210o to 290o and 120o to 200o, and the clusters of 300o to 360o, 230o to 300o and 120o to 200o are three major mineralization stages, with fluid salinity peaks from 4.14% to 7.31%, 2.07% to 7.31% and 0.53% to 3.90%, respectively. The ore-forming fluids are mainly type of NaCl-H2O with medium to high density(0.74–1.02 g/cm3), or CO2-bearing NaCl-H2O with medium to low density(0.18–0.79 g/cm3). The fluid salinity and density both show a decline tendency with decreasing temperature. According to the measurement and calculation of Hand O-isotopic compositions in the quartz of the quartz-sulfide veins, δDV-SMOW of the ore-forming fluid is from-84‰ to-54‰, and δ18OV-SMOW of that is from 6.75‰ to 9.21‰, indicating a magmatic fluid. The δ34SV-CDT of sulfides in the ores fall into two groups, one is from-4.4‰ to 2.2‰ with average of-1.42‰, and the other from 18.8‰ to 21.6‰ with average of 19.8‰. The S-isotopic data shows one peak at-4.4‰ to 2.2‰(meaning-1.42‰) suggesting a simple magmatic sulfur source. The ore Pbisotopic ratios are 206Pb/204Pb from 17.817 to 17.983, 207Pb/204Pb from 15.470 to 15.620 and 208Pb/204Pb from 38.072 to 38.481, indicating characteristics of mantle-derived lead. The data show that the major ore deposits in the orefield have a magmatic-hydrothermal genesis and that the SHRIMP zircon age of the granodiorite porphyry, closely related to the mineralization, is 151.2±4.2 Ma(MSWD = 1.3), which can represent the formation ages of the ores and intrusion rocks. The study aids understanding of the ore-forming processes of the major metallic ore deposits in the orefield.  相似文献   

10.
The Jiapigou gold belt (>150 t Au), one of the most important gold-producing districts in China, is located at the northeastern margin of the North China Craton. It is composed of 17 gold deposits with an average grade around 10 g/t Au. The deposits are hosted in Archean gneiss and TTG rocks, and are all in shear zones or fractures of varying orientations and magnitudes. The δ34S values of sulfide from ores are mainly between 2.7?‰ and 10?‰. The Pb isotope characteristics of ore sulfides are different from those of the Archean metamorphic rocks and Mesozoic granites and dikes, and indicate that they have different lead sources. The sulfur and lead isotope compositions imply that the ore-forming materials might originate from multiple, mainly deep sources. Fluid inclusions in pyrite have 3He/4He ratios of 0.6 to 2.5 Ra, whereas their 40Ar/36Ar ratios range from 1,444 to 9,805, indicating a dominantly mantle fluid with a negligible crustal component. δ18O values calculated from hydrothermal quartz are between ?0.2?‰ and +5.9?‰, and δD values of the fluids in the fluid inclusions in quartz are from ?70?‰ to ?96?‰. These ranges suggest dominantly magmatic water with a minor meteoric component. The noble gas isotopic data, along with the stable isotopic data, suggest that the ore-forming fluids have a dominantly mantle source with minor crustal addition.  相似文献   

11.
The Yinshan deposit in the Jiangnan tectonic belt in South China consists of Pb‐Zn‐Ag and Cu‐Au ore bodies. This deposit contains approximately 83 Mt of the Cu‐Au ores at 0.52% Cu and 0.8 g/t Au, and 84 Mt of the Pb‐Zn‐Ag ores at 1.25% Pb, 1.02% Zn and 33.3 g/t Ag. It is hosted by low‐grade metamorphosed sedimentary rocks and mafic volcanic rocks of the lower Mesoproterozoic Shuangqiaoshan Group, and continental volcanic rocks of the Jurassic Erhuling Group and dacitic subvolcanic rocks. The ore bodies mainly consist of veinlets of sulfide minerals and sulfide‐disseminated rocks, which are divided into Cu‐Au and Pb‐Zn‐Ag ore bodies. The Cu‐Au ore bodies occur in the area close to a dacite porphyry stock (No. 3 stock), whereas Pb‐Zn‐Ag bodies occur in areas distal from the No. 3 stock. Muscovite is the main alteration mineral associated with the Cu‐Au ore bodies, and muscovite and chlorite are associated with the Pb‐Zn‐Ag ores. A zircon sensitive high‐resolution ion microprobe U‐Pb age from the No. 3 dacite stock suggests it was emplaced in Early Jurassic. Three 40Ar‐39Ar incremental‐heating mineral ages from muscovite, which are related to Cu‐Au and Pb‐Zn‐Ag mineralization, yielded 179–175 Ma. These muscovite ages indicate that Cu‐Au mineralization occurred at 178.2±1.4 Ma (2σ), and Pb‐Zn‐Ag mineralization at 175.4±1.2 Ma (2σ) and 175.3±1.1 Ma (2σ), which supports a restricted period for the mineralization. The Early Jurassic ages for the mineralization at Yinshan are similar to that of the porphyry Cu mineralization at Dexing in Jiangnan tectonic belt, and suggest that the polymetallic mineralization occurred in a regional transcompressional tectonic regime.  相似文献   

12.
The Shabaosi deposit is the only large lode gold deposit in the northern Great Xing'an Range. The gold ore bodies are hosted by sandstone and siltstone of the Middle Jurassic Ershi'erzhan Formation, and are controlled by three N–S‐trending altered fracture zones. The gold ore bodies are composed of auriferous quartz veinlets and altered rocks. Fluid inclusion studies indicate that the ore‐forming fluids belong to a H2O–NaCl–CO2–CH4 system, with salinities between 0.83 and 8.28 wt% NaCl eq., and homogenization temperatures ranging from 180 to 320 °C. The δ34S values of sulphides show a large variation from −16.9‰ to 8.5‰. The Pb isotope compositions of sulphides are characterized by a narrow range of ratios: 18.289 to 18.517 for 206Pb/204Pb, 15.548 to 15.625 for 207Pb/204Pb, and 38.149 to 38.509 for 208Pb/204Pb. The μ values range from 9.36 to 9.51. These results suggest that the ore‐forming fluids/materials were mainly of magmatic hydrothermal origin, derived from magmas produced by partial melting of the lower crust. The 40Ar/39Ar age of auriferous quartz veinlets from the Shabaosi gold deposit is about 130 Ma. The Shabaosi gold deposit has counterparts in similar orogenic gold deposits, and was formed during the post‐collisional setting of the Mongolia–Okhotsk Orogen. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

14.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

15.
西藏甲玛铜多金属矿床是中国近年来发现的特大型铜铅锌多金属矿床之一,其产出的环境和形成机理为国内外矿床学家所关注。对甲玛铜多金属矿床中代表性岩(矿)石样品进行了S、Pb、H和O同位素分析,并从成矿系统中“源”的角度对其变化规律和成因意义进行了探讨。研究结果表明,甲玛铜多金属矿床的围岩和矿石中δ34S值变化于-4.9‰~0.5‰,在硫同位素直方图上呈塔式分布,成矿热液δ34SΣS在0值附近,与矿区内斑岩体的δ34S组成(-0.2‰~-0.7‰)十分接近。表明了矿石中硫的来源单一,主要来源于岩浆。矿石铅同位素变化范围较大,明显分为两组:第一组样品富放射性成因铅,其206Pb/204Pb变化范围为18.603~18.752,207Pb/204Pb变化范围为15.610~15.686,208Pb/204Pb变化范围为38.910~39.135;第二组样品具有低放射性成因铅特征,其206Pb/204Pb变化范围为18.130~18.270,207Pb/204Pb变化范围为15.470~15.480,208Pb/204Pb变化范围为38.140~38.850。各同位素比值相对稳定,变化范围较小。将含矿斑岩的岩石铅与矿石铅进行综合投图,两种类型的铅并非单阶段正常铅,而是混合铅,有放射性成因铅的加入。可能存在不同的源区或在演化过程中有不同源区物质的混入。氢氧同位素研究结果显示,氢同位素的来源主要为深部的花岗岩体,而氧同位素由于后期大气降水增多、水/岩比值升高,导致含矿石英脉中δ18OH2O降低。因此推断甲玛铜多金属矿床成矿流体早期以深源流体为主,随着成矿过程的演化,大气降水所占的比例也越来越大。  相似文献   

16.
The Lanping basin, Yunnan province, SW China, is located at the juncture of the Eurasian and Indian Plates in the eastern part of the Tibetan Plateau. The Lanping basin, in the Sanjiang Tethyan metallogenic province, is a significant Cu–Ag–Zn–Pb mineralized belt in China that includes the largest sandstone‐hosted Zn–Pb deposit in the world, the Jinding deposit, as well as several Ag–Cu deposits (the Baiyangping and Jinman deposits). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7,000 t Ag, are mainly hosted in Meso‐Cenozoic clastic rocks and are dominantly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the basin. The Baiyangping, Babaoshan, and Hetaoqing ore deposits are representative of the epithermal base metal deposits in the Lanping basin. The microthermometric data show that the ore‐forming fluids for these deposits were low temperature (110–180 °C) and had bimodal distribution of salinity at moderate and mid to high salinities (approximately 2–8 wt.% and 18–26 wt.% NaCl equivalent). The C and O isotope data indicate that the ore‐forming fluids were related to hot basin brines. We present new He and Ar isotope data on volatiles released from fluid inclusions contained in sulfides and in barite in these three deposits. 3He/4He ratios of the ore‐forming fluids are 0.01 to 0.14 R/Ra with a mean of 0.07 Ra (where R is the 3He/4He ratio and Ra is the ratio for atmospheric helium). This mean value is intermediate to typical 3He/4He ratios for the crust (R/Ra = 0.01 to 0.05) and the ratio for air‐saturated water (R/Ra = 1). The mean ratio is also significantly lower than the ratios found for mantle‐derived fluids (R/Ra = 6 to 9). The 40Ar/36Ar ratios of the ore‐forming fluids range from 298 to 382 with a mean of 323. This value is slightly higher than that for the air‐saturated water (295.5). The 3He/4He ratios of fluids from the fluid inclusions imply that the ore‐forming fluid for the Baiyangping, Babaoshan, and Hetaoqing deposits was derived from the crust and that any mantle‐derived He was negligible. The content of the radiogenic Ar ranges between 0.2 to 20.4%, and the proportion of air‐derived 40Ar averages 94.1%. This indicates that atmospheric Ar was important in the formation of these deposits but that some radiogenic 40Ar was derived from crustal rocks. Based on these observations coupled with other geochemical evidence, we suggest that the ore‐forming fluids responsible for the formation of the Ag–Cu–Pb–Zn polymetallic ore deposits in the Baiyangping area of the Lanping basin were mainly derived from crustal fluids. The fluids may have mixed with some amount of air‐saturated water, but there was no significant involvement of mantle‐derived fluids.  相似文献   

17.
Summary The Dachang Sn-polymetallic ore district is one of the largest tin producing districts in China. Its origin has long been in dispute between magmatic-hydrothermal replacement and submarine exhalative-hydrothermal origin. The Dachang ore district comprises several types of ore deposits, including the Lamo magmatogenic skarn deposit near a granite intrusion, the Changpo-Tongkeng bedded and vein-type sulfide deposit, and the Gaofeng massive sulfide deposit. Sulfide minerals from the Lamo skarn ores show δ34S values in the range between −3 and +4‰ with a mean close to zero, suggesting a major magmatic sulfur source that likely was the intrusive Longxianggai granite. Sulfide minerals from the Gaofeng massive ores show higher δ34S values between +5 and +12‰, whereas sulfide minerals from the Changpo-Tongkeng bedded ores display lighter δ34S values between −7 and −0.2‰. The difference in the sulfur isotope ranges in the two deposits can be interpreted by different degrees of inorganic thermochemcial reduction of marine sulfate using a one-step batch separation fractionation model. Sulfur isotopic compositions from the vein-type ores at Changpo-Tongkeng vary widely from −8 to +4‰, but most of the data cluster around −2.9‰, which is close to that of bedded ores (−3.6‰). The sulfur in vein-type ores might be derived from bedded ores or it represents a mixture of magmatic- and sedimentary-derived sulfur. Pb isotopic compositions of sulfide minerals in the Dachang ore district reveal a difference between massive and bedded ores, with the massive ores displaying more radiogenic Pb isotope ratios. Correlations of 206Pb/204Pb and 207Pb/204Pb or 208Pb/204Pb for the massive and bedded ores are interpreted as two-component mixing of Pb leached from sedimentary host rocks and from deep-seated Precambrian basement rocks composed of metamorphosed volcano-sedimentary rocks. Pb isotopic compositions of sulfide minerals from vein-type ores overlap with those of bedded sulfides. Similar to the sulfur, the lead in vein-type ores might be derived from bedded ores. Skarn ores at Lamo show very limited variations in Pb isotopic compositions, which may reflect a major magmatic-hydrothermal lead source. Helium isotope data of fluid inclusions trapped in sulfides indicate that He in the massive and bedded ores has a different origin than He in fluorite of granite-related veins. The 3He/4He ratios of 1.2–2.9 Ra of fluid inclusions from sulfides at Gaofeng and Changpo-Tongkeng imply a contribution of mantle-derived fluids. Overall our data support a submarine exhalative-hydrothermal origin for the massive and bedded ore types at Dachang. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

18.
Qingdong Zeng    Jianming Liu    Zuolun Zhang    Changshun Jia    Changming Yu    Jie Ye    Hongtao Liu 《Resource Geology》2009,59(2):170-180
The Baiyinnuoer deposit (32.74 Mt ore with grades of 5.44% Zn, 2.02% Pb and 31.36 g t?1 Ag), the largest Zn‐Pb‐Ag deposit in northern China, is hosted by crystalline limestone and slate of the Early Permian Huanggangliang Formation. Detailed cross‐section mapping indicates stratigraphic and fold structural controls on the mineralization. The Zn‐Pb‐Ag mineralization is hosted predominantly by skarn, which occurs as bedding‐parallel lens that pinch out at the margins of the main economic zone. Three skarn stages are identified at the deposit: (i) garnet‐clinopyroxene; (ii) sulfides; and (iii) carbonate‐epidote. Lead isotopic compositions were determined for galena and sphalerite of the ores, whole rock samples of the Yanshanian granite and granodiorite, Permian marble and tuff, and Jurassic volcanic and subvolcanic rocks in and around the Baiyinnuoer area in order to discuss the sources of ore‐forming materials and the relationship between the ore formation and these whole rocks. Galena and sphalerite of the Baiyinnuoer ore have uniform isotopic ratios (206Pb/204Pb, 18.267–18.369; 207Pb/204Pb, 15.506–15.624; 208Pb/204Pb, 38.078–38.394) consistent with the granite and granodiorite (206Pb/204Pb, 18.252–18.346; 207Pb/204Pb, 15.504–15.560; 208Pb/204Pb, 38.141–38.320), whereas the ratios for Jurassic volcanic and subvolcanic rocks are variable and radiogenic (206Pb/204Pb, 18.468–18.614; 207Pb/204Pb, 15.521–15.557; 208Pb/204Pb, 38.304–38.375). These results indicate that the mineralization was not related to the Jurassic volcanism, but to the Yanshanian magmatism. The Permian strata may have a slight contribution to the mineralization. All features show that the Baiyinnuoer deposit is related to the Yanshanian granitic magmatism, and can be classified as a zinc‐lead‐silver skarn deposit.  相似文献   

19.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

20.
《Resource Geology》2018,68(3):275-286
The volcanic‐hosted Xiangshan uranium orefield is the largest uranium deposit in South China. Recent exploration has discovered extensive Pb–Zn mineralization beneath the uranium orebodies. Detailed geological investigation reveals that the major metallic minerals include pyrite, sphalerite, galena, and chalcopyrite, whilst the major non‐metallic minerals include quartz, sericite, and calcite. New δ18Ofluid and δDfluid data indicate that the ore‐forming fluids were mainly derived from magmatic, and the sulfide δ34S values (2.2–6.9‰) suggest a dominantly magmatic sulfur source. The Pb isotope compositions are homogeneous (206Pb/204Pb = 18.120–18.233, 207Pb/204Pb = 15.575–15.698, and 208Pb/204Pb = 37.047–38.446). The 87Sr/86Sr ratios of sulfide minerals range from 0.7197 to 0.7204, which is much higher than volcanic rocks and fall into the range of metamorphic basement. Lead and strontium isotopic compositions indicate that the metallogenic materials probably were derived from metamorphic basement. Pyrite Rb–Sr dating of the ores yielded 131.3 ± 4.0 Ma, indicating that the Pb–Zn mineralization occurred in the Early Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号