首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical binding of heavy metals in anoxic river sediments.   总被引:28,自引:0,他引:28  
K C Yu  L J Tsai  S H Chen  S T Ho 《Water research》2001,35(17):4086-4094
Acid volatile sulfides (AVS) in sediments are available for binding with divalent cationic metals through the formation of insoluble metal-sulfide complexes, thereby controlling the metal bioavailability and subsequent toxicity to benthic biocommunities. However, when the molar concentrations of simultaneously extracted metals (SEM) were greater than AVS, the unexpectedly low or nondetectable levels of metal in pore water could also be found. Thus, except AVS, additional binding phases in sediments were supposed to provide the binding sites for SEM. The aims of this study are to realize the spatial distribution of AVS, SEM, and other binding phases of heavy metals in anoxic sediments of the Ell-Ren river and to elucidate what may be the main additional binding phases except AVS in the anoxic river sediments. By comparing the spatial distributions of SEM/ AVS ratio with various binding phases in extremely anoxic sediments (redox potential was between -115 and -208 mV), both organic matter and carbonates could be considered to be the main additional binding phases of SEM other than AVS. In addition, AVS appeared to have the priority to bind with SEM. By comparing the binding phases of heavy metals before and after AVS extraction, it could be found that Fe-oxides could also be considered to be the main additional binding phase associated with Zn in slightly anoxic sediments (redox potential was between -50 and -130mV), while organic matter with Cu being the next.  相似文献   

2.
The current paper aims to check whether the factors affecting metal mobility in intertidal sediments and floodplain soils of the river Scheldt, as identified under controlled greenhouse conditions in previous studies, also play a similar role under variable field conditions. Moreover, we aimed to assess the importance of these factors as a function of sampling time and depth, with respect to the natural variations in water table levels. This field monitoring revealed that the mobility of metals in intertidal sediments of the Scheldt estuary indeed are affected by factors which were identified to affect the metal fate in the upper sediment layer in previous greenhouse experiments. However, the effects were often less pronounced under field conditions. This can be attributed to the lower sampling resolution, the occurrence of interactions between factors, the disturbance of microbial communities during setup of greenhouse experiments and the more moderate environmental conditions in the field, affecting microbial and enzymatic activities. At most of the sampled wetlands, the level of the water table fluctuated only slightly during fall, winter and spring, whereas it decreased substantially during summer, especially at the sites with more sandy sediments. The highest sulphide concentrations were found at the sites where the water table level never decreased considerably. These sulphides primarily suppress the availability of Cd, Cu, Ni and Zn. Organic complexation resulted in the mobilisation of Cu, Ni and Cr. The concentrations of Cd, Ni and Zn in the pore water were affected by Fe/Mn oxide reduction, whereas Cd and Zn concentrations appeared to be also affected by the salinity.  相似文献   

3.
The impact of runoff from sulfuric soils in the heavily drained Cudgen Lake floodplain, eastern Australia on water quality and downstream coastal lake sediments has been examined. The oxidation of sulfidic soils and the transformation into sulfuric soils leads to changes not only in the upper soil profile but also affects drainage water quality and the chemistry of bottom sediments in receiving waters. Oxidation transforms the soil from a sink for sulfur and metals to a significant source for downstream environments. Sulfuric soils within the Cudgen Lake catchment contain 9.18 x 10(5) mol H+ per hectare as well as elevated concentration of metals (e.g. Al, Fe, Mn) and sulfate. These products of sulfidic soil oxidation are transported efficiently from the soil profile by the constructed drainage network and into the downstream lake system. The acid volatile sulfur (AVS), chromium reducible sulfur (CRS), total sulfur, organic carbon, and reactive iron contents present in the solid phase of the lake sediments are reported. The AVS/CRS, DOP and DOS values observed in the lake sediments show that natural monosulfide formation in the near surface sediments has been enhanced due to increased inputs of organic matter, sulfate, ferrous iron and other metals following development of the catchment. There are elevated concentrations of metals (e.g. As, Al, Cd, Cr, Hg, Zn and Pb) in the upper layer of monosulfidic lake sediments compared with the underlying pyritic sediments some of which exceed sediment quality guidelines. These metals could be released by dredging or through re-suspension during high flow conditions or enter the food chain.  相似文献   

4.
Solubility of metals in an anoxic sediment during prolonged aeration   总被引:8,自引:0,他引:8  
This work was conducted to study the evolution of the solubility of selected metals during the aeration of an anoxic sediment. Batch experiments were carried out for 76 days with a metal-polluted dredged sediment. The pH, Eh and concentration of Al, Cu, Fe, Hg, Pb and Zn were periodically recorded. Results showed that during the early stages of aeration, the solubility of metals increased rapidly but was then followed by fast re-adsorption. As a consequence, after 14 days most of the metals excepted Cu and Zn were present at low or undetectable concentrations in solution. Re-adsorption of Zn was observed to be much slower during the first two weeks, whereas solubilisation of Cu increased gradually during months after land disposal. According to speciation calculations, Cu solubilisation was in part due to complexation in solution by carbonates. In the case of Hg, although complexation by dissolved organic matter (DOM) could be expected, re-adsorption was the dominant process. However, more knowledge about the behaviour of the DOM present in anoxic sediments is needed in order to make more quantitative statements about the mobility of heavy metals contained in dredged material.  相似文献   

5.
An integrated selective extraction and size normalisation procedure for use in metal partitioning and diagenetic studies of anoxic sediments and soils is presented. Data obtained by this procedure can readily be combined with other primary data (e.g. sulfur concentrations, carbonate concentrations, cation exchange capacity, etc.) and derived parameters (e.g. degrees of pyritisation and sulfidisation) that enhance interpretation of the behaviour of trace metals in anoxic sediments. Achieving size normalisation during extraction, allows direct comparison of sediments from dissimilar sedimentary environments, and simplifies assessment of the processes that determine whether a sediment is a source of or a sink for trace metals. Aspects of a study of trace metals in sediments from the Brisbane River estuary, Australia, are used to illustrate applications of the integrated procedure.  相似文献   

6.
《Water research》1996,30(3):679-687
Currently, pollution by heavy metals is one of our most serious environmental problems. Metals such as lead and cadmium enter the biosphere through biogenic and anthropogenic emissions and have been steadily accumulating in soils and sediments. We report on a remote mountain lake in the Swiss Alps where the unusual conditions present have led to the accumulation of several heavy metals in the sediments. The sulfide rich environment contains precipitates of cadmium, lead and zinc. The anoxic conditions and prevalence of sulfate reducing bacteria in the water column have prevented the remobilisation of the metals leaving them trapped in the sediments. This has resulted in the formation of surprisingly “stable” metal profiles which have been correlated to levels of human and industrial activity and provide the means of reconstructing a record of human impact and pollution over the past 50 to 100 years. We suggest that such metals in sediment profiles can also be used as chronological markers in cases where cost or sampling difficulties preclude the use of radiological 137Cs and 210Pb dating. Stable metal profiles are valuable sources of environmental data, they reveal pertinent information on the atmospheric transport of contaminants and are relatively simple to analyse.  相似文献   

7.
The Netherlands Stimulation program on System-oriented Ecotoxicological Research focused on three study areas, including two floodplains and a peaty grassland. All three areas were polluted with metals, with total soil concentrations often exceeding Dutch Intervention Values. The floodplain areas showed a homogeneous distribution of metal pollution, while pollution in the peaty area was more heterogeneous. This study aimed at establishing possible general trends in metal bioavailability by combining results obtained at the three different study sites. Available metal concentrations, measured as pore water or 0.01 M CaCl2 extractable concentrations in soil, were lowest in the floodplain soils, probably due to the high pH (> 7.0) and high organic matter (8-30%) and clay contents (13-42%). In the peaty soil, having a lower soil pH (4.5-6.5) but higher organic matter contents (38-60%), in some but not all samples Cu concentrations in pore water and Cu and Pb concentrations in 0.01 CaCl2 extracts were higher than in non-polluted reference areas. Plants in the floodplain areas had only low metal concentrations in their leaves, but soil invertebrates and small mammals did contain elevated concentrations in their body. Cd showed high levels in earthworms, snails and small mammals, while also Cu levels were sometimes increased in earthworms, millipedes and small mammals from the floodplain areas. Earthworms from the peaty area contained increased levels of Cu and Pb. These results suggest that metal bioavailability cannot be predicted from available concentrations in pore water or 0.01 M CaCl2 soil extracts, but requires measurement of biota and more insight into the biodynamics of metal uptake.  相似文献   

8.
Field data for sediment pH, Eh, sulphur and organic matter were analysed to determine their relationship with measured dissolved and particulate metals from sites in the Fly River affected by mine‐derived wastes. The above‐background concentrations of dissolved metals correspond to various concentration groups as demonstrated by copper for background (< 70 mg/kg), moderate (70–500mg/kg) and severe (> 500mg/kg), respectively. Dissolved Cu (r = 0.7431, p < 0.0005) and Mo (r = 0.7133,/> < 0.0005) were significantly correlated with their sediment component. Dissolved Al, Cd, Cu and Mo were positively correlated with sediment pH. Significant negative correlation between dissolved copper and sediment (SOM) organic matter (r = ‐0.3821, p < 0.05), and positive correlation with dissolved Al (r = 0.9358, p < 0.0005) suggest that dissolved Cu is present as a complex with either organic matter, Al/Fe oxyhydroxides, or oxyhydroxide‐organic matter colloids. Significant interrelations between dissolved Al, Cu and Mo with organic matter and the ratio of Fe/SOM also suggests that sediment physico‐chemical characteristics are important in the processes occurring in the Fly River floodplain sediments. These processes appear to be responsible for the significantly increased metal concentration in the water column.  相似文献   

9.
Heavy metal polluted soils usually contain mixtures of different metals, whereas legislation is derived from concentrations of individual metals. The mixture toxicity of the Dutch floodplain Afferdensche and Deestsche Waarden was estimated to be high (msPAF ranged from 67-94%). Analyses of nematode community based bioindicators (Maturity Index, taxonomic diversity, trophic groups, multivariate analysis, DoFT-sentinels) were used to determine the ecological effects of the mixture toxicity in the floodplain soil. None of the indices indicated direct effects of heavy metals on the nematode community. This can be explained by the high adsorption of heavy metals on organic matter and clay particles resulting in a low bioavailability, and questions the estimation of the toxicity based on total concentrations of heavy metals in such environments. The nematode fauna showed great seasonal variation, which most probably was related to the temporal inundation of the floodplain.  相似文献   

10.
Fumi Tada  Shizuo Suzuki 《Water research》1982,16(10):1489-1494
An adsorption experiment has been carried out to determine the factors affecting the uptake of heavy metals by bottom mud in urban rivers. The adsorption of Cu, Zn, Cd, and Pb was described using the Freundlich adsorption equation. The Freundlich constant (K) was related to the grain size and organic matter content of bottom mud. It was found that the main factor controlling the adsorption of metal was organic matter, since the adsorbed metals decreased remarkably due to the destruction of organic matter from the fine bottom mud. The desorption experiment proved that the metals adsorbed by mud were extracted approx. 100% with dilute HCI. Therefore, the amount of heavy metal adsorbed per 1 g of TOC can be calculated from the acid soluble metal content of bottom mud. Moreover, the method of extraction by 2 N CH3COONH4 can be used to distinguish between an ion exchangeable form by minerals and a chemical form by organic matter.The adsorption and desorption experiments indicated that fine bottom mud with a high organic matter content contributes to the uptake of metals in urban rivers and that such metals can be extracted with 0.5 N HCI.  相似文献   

11.
Yu KC  Tsai LJ  Chen SH  Ho ST 《Water research》2001,35(10):2417-2428
This article presents the amounts of heavy metals bound to the sediment matrices (carbonates, Fe-oxides, Mn-oxides, and organic matter), the correlations between any two heavy-metal binding fractions, and the correlations between sediment matrices and their heavy-metal binding fractions. Data consisted of 313 sets obtained from five main rivers (located in southern Taiwan) were analyzed by statistical methods. Among six heavy metals analyzed (Zn, Cu. Pb, Ni, Cr, and Co), the statistical results show that Zn is primarily bound to organic matter, and Cr is primarily bound to Fe-oxides. Principal component analysis (PCA) and correlation analysis (CA) result in significant correlations between carbonates bound Ni and carbonates bound Cr, Fe-oxides bound Ni and Fe-oxides bound Cr, and Mn-oxides bound Cu and Mn-oxides bound Cr. From linear regression results, the levels of the six heavy metals bound to either organic matter or Fe-oxides is moderately dependent on the contents of organic matter or Fe-oxides, especially true for Cr and Pb. According to slope values of linear regression, Cu and Cr have the highest specific binding amounts (SBA) to organic matter and Fe-oxides, respectively. A significant correlation between organic matter and organically bound heavy metals implied that organic matter contained in the sediments of the Potzu river and the Yenshui river can be adequately used as a normalizing agent. However, the six heavy metals bound to either carbonates or Mn-oxides do not correlate with carbonates or Mn-oxides. The obtained results also imply that competitions of various sediment phases in association with heavy metals occur, and organic matter and Fe-oxides are more accessible to heavy metals than other sediment phases.  相似文献   

12.
Controlled flooding of lowlands is considered as a potential water management strategy to minimize the risk of flooding of inhabited areas during high water periods. However, due to industrial activities, river water, sediments and soils are often contaminated with metals which may have adverse effects on the ecosystem's structure and functioning. Additionally, salinity may greatly affect the bioavailability and toxicity of metals present or imported into these systems. The effect of contaminated soils under different flooding and salinity exposure scenarios on the growth, reproduction and metal accumulation in the oligochaete Tubifex tubifex (Müller, 1774) were examined. In these bioassays metal contaminated soils were flooded with water of different salinities (0 and 3 psu), and tested after 0, 6 and 12 months of permanent inundation. We indeed found that inundation time had significant decreasing effects on Cu and Zn accumulation; although initial accumulation of Cu and Zn was higher in the previously unflooded soil at the start of the flooding treatment, these differences seem to disappear after 6 months of permanent inundation. Moreover, the complex interaction between substrate type and salinity suggests that redox potential is probably of major importance.  相似文献   

13.
Heavy metal content (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) was analysed in the edible parts of two types of horticultural crops (leaf and inflorescence crops) from 30 agricultural fields in Castellón (Spain), a representative area of the European Mediterranean region. Selected soil properties relevant to control the mobility and bioavaibility of heavy metals were analysed for the general characterisation of these agricultural soils. The levels of clay, high percentages of organic matter and the presence of carbonate seem to suggest an important retention of heavy metals by these components in most of these soils. However, the high salinity in some fields (>4 dS/m) seems to facilitate the mobility of some heavy metals (e.g. Cu). The mean values of total contents of heavy metals in soils were similar to values obtained in other works on Spanish agricultural soils. However, there were some fields with a metal content (particularly Cu, Pb or Zn) higher than these works, reflecting an important anthropogenic source. In seven fields, the crop contents of Cd and/or Pb were higher than the maximum levels established by the Commission Regulation no. 466/2001 for horticultural crops. Heavy metal contents in leaf crops were higher than in inflorescence crops, except for Zn. The differences for Cd, Cr, Cu, Fe and Mn contents between these two types of crops were statistically significant. The analysis of crop heavy metal contents showed a higher absorption and/or accumulation of heavy metals in leaf crops than in inflorescence crops. Differences in crop characteristics seem to be responsible for the differential accumulation of heavy metals. Furthermore, agronomic practices and other sources of heavy metals (e.g. atmospheric deposition for Cd and Pb) may also have some influence on crop accumulation. Given the relevance of horticultural crops in the Mediterranean diet, it is highly necessary to extend the experience of this work to other areas of the European Mediterranean region.  相似文献   

14.
Influence of Halimione portulacoides, commonly found in temperate salt marshes, on sediment metal contents, speciation and potential mobility in case of sediment re-suspension was evaluated. Both colonized and non-colonized sediments were studied for total Cd, Cu, Pb and Zn contents and metal fraction exchangeable to water collected in situ. Sediment elutriates, prepared with water collected from each site, were used to simulate a sediment re-suspension phenomenon. As the characteristics and degree of contamination of sediments may influence system behaviour, salt marshes of two Portuguese estuaries, Cavado (NW coast) and Sado (SW coast), were studied. Cu, Pb and Zn contents higher than ERL (quality guideline, effect range-low) were observed, indicating potential risks for living organisms. Strong Cu-complexing organic ligands, also determined in both water and elutriates, were higher in rhizosediment elutriates, at concentrations similar, or even higher, to those of Cu. Such ligands condition metals speciation in the water column and probably also metal bioavailability. From rhizosediment significant amounts of Cu and Zn were transferred to the aqueous phase, concentrations 2-8 times higher than concentrations present in water. In contrast, elutriates of non-colonized sediment removed metals from water, Cu and Zn levels in elutriates being 2-6 times lower than initial ones. Cd and Pb levels in water and elutriates were not measurable in most cases. Results clearly indicate that metals potential solubility in the rhizosphere of plants was markedly higher than that in the surrounding sediment. The obtained results indicated that H. portulacoides presence (and probably other salt marsh plants) may cause a marked increase in metals concentrations in dissolved phase (pore water or even water column if rhizosediment is re-suspended). As salt marsh plants may be abundant in temperate and subtropical estuaries and costal lagoons, this phenomenon should not be disregard in future studies towards the sustainable management of such environments.  相似文献   

15.
The microbial decomposition of nitrogen-rich organic matter in aquaculture ponds is affected by the oxic-anoxic conditions gradient at the soil-water interface as well as by resuspension practices. To investigate these interactions, the decomposition of a 49% protein fish feed was analyzed in 10 marine lab-scale systems with different exposures to aerobic and anaerobic conditions. The degree of coupling between oxic and anoxic conditions in the system had a strong effect on product accumulation and loss from the culture system. Pure oxic or anoxic conditions proved to be less favorable than mixed aerobic-anaerobic systems with respect to the metabolites accumulated in the system. Short 15-min resuspension events and a continuous alternation of oxic and anoxic conditions at 12-h time intervals proved to be the best options to minimize the accumulation of organic matter in the systems. The correct coupling of aerobic-anaerobic conditions in space and time is a key to maintain a good water quality condition for the cultured animals and also to improve the decomposition and recycling of organic matter, reducing the environmental impact from the effluents.  相似文献   

16.
Heavy metals in rivers of Latvia   总被引:11,自引:0,他引:11  
Total heavy metal concentrations in waters and sediments (HNO3 digestible Pb, Cu, Co, Ni, Mn, Zn) and their speciation forms in sediments (exchangeable, carbonate bound, iron-manganese oxide bound, organic matter bound and residual) in major and common small watercourses (31 sampling stations) along their flow in Latvia were determined. The metal loads entering the Baltic Sea from Latvia were calculated. Increased metal concentrations were found only in lower reaches of the largest rivers and locally around known industrial pollution sources. Differences in metal concentrations and loads in rivers from different regions of Latvia were related to natural geochemical processes. Metal speciation analysis showed that the dominant metal species are residual metals and those bound to organic matter. Residual and carbonate-bound metal dominated only in rhitral regions of rivers. The concentrations of exchangeable metals increased below pollution sources.  相似文献   

17.
The use of municipal solid waste (MSW) compost as fertilizer may cause increased leaching due to its high content of trace metals and thus pose a threat to groundwater quality. The effect of MSW compost application on trace metal leaching in calcareous soils has been studied in soil column experiments under laboratory conditions using three soils from the study area in the Gaza Strip and Israel. Higher levels of organic matter in solution (TOMS), nitrate, and the trace metals Cu, Ni and Zn were found in the leachates of a sandy soil and, to a lesser extent, a loamy soil, to which MSW compost had been applied at a rate of 65 Mg ha(-1) (dry weight basis). Nevertheless, the majority of water-soluble trace metal species from compost accumulated in the topsoil rather than washing out, with the exception of aqueous Ni species. Ni concentrations exceeded the maximum allowable limits for drinking water (in Germany: 50 microg l(-1)) at peak times in the leachates from sandy soil, while all other trace metals remained far below the corresponding limits. The highest absolute concentrations of trace metals were found for the leaching of Cu from compost-amended sandy soil (100 microg l(-1)). For Cd, Pb and Hg no evidence of downward movement was found in any assay. Gel filtration studies of the collected soil leachates showed that all trace metals encountered in the leachates existed mostly as organic complexes. In sandy soil most of the water-soluble organic matter added with the compost had leached from the rootzone after a year's equivalent of rainfall, while TOMS mobility was greatly reduced in the loamy soil. The makeup of the TOMS in the sandy soil and its metal-binding capacity was strongly influenced by compost-derived dissolved organic matter (DOM) as observed by FTIR spectrometry. Hence the vertical displacement of trace metals (Cu, Ni, Zn) in these calcareous soils seemed to result primarily from the presence of mobile metal-organic complexes in the soil solution after compost addition. Further studies are required to validate these findings in the field, especially to assess the risk of Cu and Ni leaching in sandy soil.  相似文献   

18.
The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.  相似文献   

19.
We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of <1 x 10(3), 1-10 x 10(3), 10-100 x 10(3), and >100 x 10(3). The organic matter source was land plants, based on the carbon isotope ratios (delta(13)C/(12)C). The organic matter in surface water originated from presently growing land plants, based on (14)C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter (<1 x 10(3)) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment.  相似文献   

20.
Pulicat Lake sediments are often severely polluted with mercury compounds and other toxic heavy metals. Several mercury-resistant bacteria were isolated and identified from the sediments and all the isolates exhibited broad spectrum resistance (both organic and inorganic mercuric compounds). Mercury volatilization showed that four of the isolated Bacillus cereus strains were able to reduce water soluble ionic form of mercury into volatile form via the well known enzymatic reduction. The effect of increasing concentration of mercuric chloride and phenyl mercuric acetate in the growth of this mercury reducing strain was also determined. To study the native physico-chemical parameters, which influence the bioavailability of mercury to bacteria in Pulicat Lake ecosystem, a total of 60 water and 30 sediment samples were collected and analyzed for pH, temperature, dissolved oxygen, salinity, nitrate, nitrite, silicate, phosphate, organic matter and organic carbon. Increased levels of phosphate, nitrite, nitrate, silicate, organic matter and organic carbon during the post monsoon reduce the bioavailability of mercury by forming complexes which may increase the concentration of mercury in the sediments during post monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号