首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drying is one of the easily accessible and the most widespread processing technologies that have been used since ancient times for preserving fruits. Drying is an energy-intensive and time-consuming process, so reducing energy demand is important. The main aim of this paper is to analyze the heat and mass transfer characteristics of product in the drying chamber and in addition to this, three-dimensional (3-D) computational fluid dynamic (CFD) simulation was performed. The analyses of heat and mass transfer were investigated theoretically and experimentally in infrared dryer (IRD). The dryer consists of air to air heat recovery unit and proportional temperature controller. Experiments were performed at 0.5 and 0.25?m/s air velocities and at 60 and 65°C apricot surface temperatures which were controlled by three thermocouples contacted on top side of the product. In order to use energy more effectively and improve the drying characteristics of apricot, analyses were performed under different drying conditions. Since the heat recovery unit has a key role in this system, the performance of this unit was investigated and recovered energy ratio was between 58 and 62%. The calculated moisture diffusivity values varied from 1.7?×?10?10 to 1.15?×?10?9 for apricot, and the highest value of average energy efficiency was obtained as 16.43% at 65°C temperature and 0.25?m/s air velocity. Theoretical and experimental results are in line with each other.  相似文献   

2.
Three-dimensional finite element models with consideration of shrinkage and irregular shape were developed to estimate the relationships among the transient heat and mass transfer coefficients, the transient water diffusivity, and the temperature and moisture content of the red kidney beans being dried under different drying conditions. An equation was developed to calculate the transient mass transfer coefficient using the measured time–moisture content data. This calculated transient mass transfer coefficient was further used to calculate the transient heat transfer coefficient. To verify the predicted temperature on the surface of the red kidney beans, surface temperature was measured using a handhold infrared thermometer. These measured temperature and time–moisture content data were used to determine the transient water diffusivity using the least square method when the red kidney bean kernel experienced a shrinkage during drying. Strong relationship among the transient heat and mass transfer coefficients, the water diffusivity, and the ratio of the transient heat and mass transfer coefficients was revealed. This relationship could be used to predict temperature and moisture content of the red kidney beans during the entire drying period. The Lewis number?=?27, and the ratio of the transient heat over mass transfer coefficients was 10765?J?m?3?k?1 at 30 and 40°C, and 10729?J?m?3?k?1 at 50°C. Shrinkage did not significantly influence the value of the estimated transient water diffusivity.  相似文献   

3.
Three different solar drying methods were carried out on four different medicinal plants to investigate the benefits of using an unglazed transpired solar dryer (UTSD) over other traditional methods. Methods involved included drying in an unglazed transpired solar dryer (using suction air flow rate of 0.06 m3s?1), drying in the open air under direct sun rays and a common traditional drying method in a shaded drying house. The three drying methods were used to dry the following medicinal plants: henna (Lawsonia inermis L.), rosemary (Rosmarinus officinalis L.), marjoram (Majorana hortensis L.), and moghat (Glossostemon bruguieri L.). Drying processes were carried out under the climatic weather conditions of Ismailia, Egypt. Drying rate, drying ratio, and the medicinal plants qualities in terms of oil quantity and sensation tests were considered. The results showed higher oil quantity obtained from rosemary and marjoram dried in the UTSD, compared with those dried in the shaded drying house and in the open air under direct sun.  相似文献   

4.
In the current study, evolution of thermophysical properties of red chilli dried in a mixed mode solar dryer that integrates sodium sulfate decahydrate (Na2SO4?·?10H2O) and sodium chloride (NaCl) as thermal storage were presented. Solar drying with Na2SO4?·?10H2O reduced the drying time by 26.7 and 39%, compared to the drying time with or without NaCl. Dimensional shrinkage was gradual with a nonlinear exponential shape for the whole drying conditions. The evolution of the bulk and particle densities decreased while the porosity of the seed increased with time. The coefficient of heat and mass transfer varied from 0.0036???0.035?W/m2?K to 6.09?×?10?9???6.2?×?10?8?m/s, respectively. The thermal conductivity, specific heat capacity, and thermal diffusivity ranged from 0.0568 to 0.1093?W/m?K, 1,072 to 2218.7?J/kg?K, and 4.7?×?10?5 to 5.13?×?10?5?m2/s, respectively.  相似文献   

5.
《Drying Technology》2013,31(3-4):583-597
In this study, a solar cabinet dryer consisting of a solar air heater and a drying cabinet, was used in drying experiments. Pumpkin, green pepper, stuffed pepper, green bean, and onion were dried in thin layers. Three different drying air velocities were applied to the process of drying to determine their effects on drying time. Fresh materials were dried by a natural sun drying method. In order to explain drying curves of these products different moisture ratio models were performed and evaluated based on their determination coefficients (R2). Our results revealed that drying air temperature could increase up to about 46°C. Drying air velocity had an important effect on drying process. Drying time changed between 30.29 and 90.43 hours for different vegetables by the solar drying. This drying time was between 48.59 and 121.81 hours for the natural sun drying. Drying curves could be explained by determined thin layer drying models satisfactorily with very high determination coeffcients.  相似文献   

6.
A prototype of a hybrid solar dryer was developed for drying of tomato. It consists of a flat-plate concentrating collector, heat storage with auxiliary heating unit, and drying unit. It has a loading capacity of 20 kg of fresh half-cut tomato. The dryer was tested in different weather and operating conditions. The performance of the dryer was compared with an open sun-drying method. Drying performance was evaluated in terms of drying rate, color, ascorbic acid, lycopene, and total flavonoids. Tomato halves were pretreated with UV radiation, acetic acid, citric acid, ascorbic acid, sodium metabisulphite, and sodium chloride. Sodium metabisulphite (8 g L?1) was found to be effective to prevent the microbial growth at lower temperature (45°C).  相似文献   

7.
Abstract

This paper presents the main activities of the Gas Fluidization and Drying Team of the Chemical Engineering Laboratory at Toulouse. The emphasis has been put on the modeling of a fluidized bed dryer and its derivates such as a flotation fluidized bed, by the analysis of heat and mass transfer together with the physico-chemical transformations of the product during drying. Several studies have been performed on different solids (cereal and chemical products) to illustrate the effect of the operating conditions on dehydration and degradation kinetics The knowledge of heat and mass transfer coefficients in flotation fluidized bed allows to determine intrinsec drying and degradation kinetics. These kinetics can be used in any conductive or convective drier model.  相似文献   

8.
ABSTRACT

Drying curves obtained in a pilot-scale fluidized bed dryer using biological source solids (sawdust, soya and fish meal) were used to estimate the parameters involved in heat and mass transfer phenomenas: heat transfer coefficient and moisture diffusivity coefficient. Parameters involved in mass transfer were estimated from drying models based on diffusional mechanisms and others that in addition consider internal and external resistance to the mass transfer. The estimate ef ective diffusivity coefficient was between 2x10-11 to lx10 (m2/s) for the considered products. Heat transfer coefficient was estimated from drying data points in the constant drying rate period when the external resistance to the mass transfer controls the process.  相似文献   

9.
ABSTRACT

A study of simultaneous heat and mass transfer during drying an infinite cylinder shape material (twigs of ilex paraguayenais saint hilaire) was carried out. The finite-difference method was used to solve the drying model and a simultaneous heat and mass balance in each node was made. Models with different assumptions were tested and the external mass transfer coefficient was used as a parameter to fit the model to experimental data. The thickness of the node and the time step were selected considering the system stability.

Drying temperature, twig diameter and air velocity were selected as study variables. The models results were in good agreement with experimental measurements giving mass coefficient values between 1.97 10?4and 9.55 10?4 Kg/m2 s.  相似文献   

10.
Entrained flow drying is an important fast drying tool in tobacco industry. This study used a drop tube reactor (DTR) as an entrained flow dryer to investigate drying process of flue-cured cut tobacco. Lab-scale cold and hot DTRs were set up to obtain drying kinetics for three types of cut tobacco using different drying gases and temperatures. The effective diffusion coefficients of cut tobacco in DTRs were compared with those in a general cylinder dryer. Moreover, the effects of different drying gases and temperatures on petroleum ether extract content were investigated. The results showed that the effective diffusion coefficients of cut tobacco in the DTRs were between 2.296?×?10?8 and 8–6.244?×?10?8?m2/s, which are two orders of magnitude higher than those in the cylinder dryer. Compared to hot air as a drying medium, superheated steam improved the effective diffusion coefficient of cut tobacco. The petroleum ether tobacco extract had a higher retention ratio when the superheated steam was used in the DTRs. An increase in the drying temperature resulted in a lower retention of the petroleum ether tobacco extract.  相似文献   

11.
Experimental results of surface temperature and moisture content of twigs of mate were obtained in a conveyor-belt dryer operated batchwise. The first response was determined with an infrared sensor, while the second was by conventional gravimetry. A set of 0.04-m-long cylindrical twigs classified manually into three different subgroups on the basis of their diameters (3.5 × 10?3, 6.5 × 10?3, and 10 × 10?3 m) were used in the experiments. Drying always took place in a chamber fed with a thin single layer of material 0.5 m in length and 0.05 m wide. The fresh twigs without leaves at ambient temperature (≈27.2 ± 2.6°C) and with an initial moisture content close to 0.8 ± 0.1 were dried at three different average air temperatures (65.5, 80.2, and 83.8°C) for 7200 s. A full set of nine (31 × 31) drying experiments were performed by varying the examined factors (particle diameter and drying temperature) at three levels. The low estimated Biot numbers (<0.55) indicate that convection plays a much more important role than conduction in heat transfer. Because of this and since heating was much faster than drying, the Newton’s law of cooling alone was successfully applied to describe the increase of particle temperature with time. From a similar analysis involving a convective mass transfer coefficient calculated with the Chilton-Colburn analogy emerged high-mass-transfer Biot numbers (≈5.37 × 103 ? 3.65 × 105) that reveal drying of twigs is governed by diffusion. In fact, the equation that represents the Fick’s second law of diffusion in a long cylinder (one-dimensional transfer), solved analytically and coupled to the model of heat transfer, was able to describe the kinetics of drying of mate twigs.  相似文献   

12.
ABSTRACT

A fluid bed dryer simulator was developed under Excel 5 wlth Visual Basic for Applications environment The simulator iS based on a mathematical model describing heat and mass transfer in the dryer. The total model incorporates empirical models for the Drying Constant and the Residence Time. These empirical models are crucial in the total model efficiency. Thus a procedure for updating the parameters of the empirical models is provided. This procedure constitutes the ‘learnhg’ property of the simulator. Two databases are Supplied. The first contains laboratory drying data and it is used for tuning the Drying Constant empirical model. The second contains industrial drying data from the real operation of the dryer, and it is used for tuning the Residence Time empirical model. The experience from the industrial application of the simulator proved that the simulator is a powerful tool for flexible operation of an industrial dryer. This paper is presents the total mathematical model of the dryer, the learning concept, and the databases, including useful information concerning the drying kinetics of bentonite. A simulator outline is presented and typical capabilities and uses are briefly described. A case study for flexible operation of an industrial dryer is discussed.  相似文献   

13.
This article describes the analysis of heat and mass transfer coefficients for a single board of Pinus radiata (D. Don) timber over a range of high temperature and superheated steam drying conditions. The calculated heat transfer coefficients were in the range 20 to 60 W m?2 K?1. The mass transfer coefficients were of the order of 2 × 10?8 to 3 × 10?7 kg m?2 s?1, based on the vapor pressure difference, and of the order of 0.002 to 0.04 m s?1 (expressed in terms of mass transfer velocity) based on vapor concentration difference between the surface of the board and the bulk drying medium.  相似文献   

14.
Vasile Minea 《Drying Technology》2013,31(14):1630-1643
This article presents a 13-m3 wood dryer coupled with a 5.6-kW (compressor power input) heat pump. Drying tests with hardwood species such as yellow birch and hard maple were completed in order to determine the system's energy performance. Supplementary heating to compensate for the dryer heat losses was supplied using electrical coils or steam exchangers. The heat pump running profiles and dehumidification performance in terms of volumes removed and water extraction rates, coefficients of performance, and specific moisture extraction rates were determined for two all-electrical and two hybrid drying tests. The hardwood drying curves, share of the final moisture content, and final quality of the dried wood stacks, as well as total drying energy consumption and costs, were determined for each drying run. Finally, the total energy consumption of the drying cycles using a heat pump was compared with that of a conventional drying cycle using natural gas as a single energy source.  相似文献   

15.
This paper presents the main activities of the Gas Fluidization and Drying Team of the Chemical Engineering Laboratory at Toulouse. The emphasis has been put on the modeling of a fluidized bed dryer and its derivates such as a flotation fluidized bed, by the analysis of heat and mass transfer together with the physico-chemical transformations of the product during drying. Several studies have been performed on different solids (cereal and chemical products) to illustrate the effect of the operating conditions on dehydration and degradation kinetics The knowledge of heat and mass transfer coefficients in flotation fluidized bed allows to determine intrinsec drying and degradation kinetics. These kinetics can be used in any conductive or convective drier model.  相似文献   

16.
ABSTRACT

An experimental air dryer was used to investigate the effects of air temperature, sphere diameter and puffing with CO2 on the drying of potato spheres. Accordingly, the experimental results showed only falling-rate behaviour and hence drying completely controlled by internal mass transfer was interpreted on the basis of Fick's diffusional model for non-steady state diffusion. Drying rate increased with increasing air temperature, and also increased with decreasing diameter of sphere. By considering the diffusion coefficients at different diameters, it was established that the drying occurred by a diffusion mechanism as opposed to a capillary mechanism. It was also found that CO2 puffing had a positive effect on the drying rate.  相似文献   

17.
18.
Drying curves obtained in a pilot-scale fluidized bed dryer using biological source solids (sawdust, soya and fish meal) were used to estimate the parameters involved in heat and mass transfer phenomenas: heat transfer coefficient and moisture diffusivity coefficient. Parameters involved in mass transfer were estimated from drying models based on diffusional mechanisms and others that in addition consider internal and external resistance to the mass transfer. The estimate ef ective diffusivity coefficient was between 2x10-11 to lx10 (m2/s) for the considered products. Heat transfer coefficient was estimated from drying data points in the constant drying rate period when the external resistance to the mass transfer controls the process.  相似文献   

19.
Drying tests for pine sawdust and mackerel press-cake with hot air and with superheated steam were carried out in a pilot impingement cylindrical dryer. Wet particles move axially along the dryer, adjusting the inclination of the equipment, whereas hot gases circulate in cross-flow against the particles, forming a corotational impingement front. Feed rate and residence time of solids were studied experimentally as a function of dryer inclination for hot air and superheated steam as drying media. Drying rates and heat and mass transfer coefficients were found to increase at shorter residence times and higher gas temperatures. Dried mackerel press-cake with superheated steam resulted in a product with high moisture removal and very low losses of the valuable omega-3 fatty acids.  相似文献   

20.
The drying behavior of a single rice kernel subjected to convective drying was analyzed numerically by solving heat and moisture transfer equations using a coupled computational fluid dynamics (CFD) and diffusion model. The transfer coefficients were computed simultaneously with the external flow field and the internal diffusive field of the grain. The model was validated using results of a thin-layer drying experiments from the literature. The effects of velocity and temperature of the drying air on the rice kernel were analyzed. It was found that the air temperature was the major variable that affected the drying rate of the rice kernel. The initial drying rates (in first 20 min) were 7, 12, and 19% per hour at inlet air temperatures of 30, 45, and 60 ° C, respectively. Important temperature gradients within the grain existed only in the first few minutes of the drying process. The moisture content gradients reached a maximum value of 11.7% (db) mm ?1 at approximately 45 min along the short axis in the thickness direction. The variation in the inlet air velocity showed a minor effect on the drying rate of the rice kernel. The heat and mass transfer coefficients varied from 16.57 to 203.46 W·m ?2·K ?1 and from 0.0160 to 0.1959 m·s ?1, respectively. The importance of the computation of the transfer coefficients with the heat and mass transfer model is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号