首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prion protein (PrP) is responsible for several fatal neurodegenerative diseases via conversion from its normal to disease-related isoform. The recombinant form of the protein is typically studied to investigate the conversion process. This constructs lacks the co- and post-translational modifications present in vivo , there the protein has two N-linked glycans and is bound to the outer leaflet of the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The inherent flexibility and heterogeneity of the glycans, the plasticity of the GPI anchor, and the localization of the protein in a membrane make experimental structural characterization of biological constructs of cellular prion protein (PrPC) challenging. Yet this characterization is central in determining not only the suitability of recombinant (rec)-PrPC as a model for biological forms of the protein but also the potential role of co- and post-translational modifications on the disease process. Here, we present molecular dynamics simulations of three human prion protein constructs: (i) a protein-only construct modeling the recombinant form, (ii) a diglycosylated and soluble construct, and (iii) a diglycosylated and GPI-anchored construct bound to a lipid bilayer. We found that glycosylation and membrane anchoring do not significantly alter the structure or dynamics of PrPC, but they do appreciably modify the accessibility of the polypeptide surface PrPC. In addition, the simulations of membrane-bound PrPC revealed likely recognition domains for the disease-initiating PrPC:PrPSc (infectious and/or misfolded form of the prion protein) binding event and a potential mechanism for the observed inefficiency of conversion associated with differentially glycosylated PrP species.  相似文献   

2.
The clarification of the physico-chemical determinants underlying amyloid deposition is critical for our understanding of misfolding diseases. With this purpose we have performed a systematic all-atom molecular dynamics (MD) study of a series of single point mutants of the de novo designed amyloidogenic peptide STVIIE. Sixteen different 50ns long simulations using explicit solvent have been carried out starting from four different conformations of a polymeric six-stranded beta-sheet. The simulations have provided evidence for the influence of a small number of site-specific hydrophobic interactions on the packing and stabilization of nascent aggregates, as well as the interplay between side-chain interactions and the net charge of the molecule on the strand arrangement of polymeric beta-sheets. This MD analysis has also shed light into the origin of the position dependence on mutation of beta-sheet polymerization that was found experimentally for this model system. Our results suggest that MD can be applied to detect critical positions for beta-sheet aggregation within a given amyloidogenic stretch. Studies similar to the one presented here can guide site-directed mutations or the design of drugs that specifically disrupt the key stabilizing interactions of beta-sheet aggregates.  相似文献   

3.
Membrane protein function and stability has been shown to be dependent on the lipid environment. Recently, we developed a high-throughput computational approach for the prediction of membrane protein/lipid interactions. In the current study, we enhanced this approach with the addition of a new measure of the distortion caused by membrane proteins on a lipid bilayer. This is illustrated by considering the effect of lipid tail length and headgroup charge on the distortion caused by the integral membrane proteins MscS and FLAP, and by the voltage sensing domain from the channel KvAP. Changing the chain length of lipids alters the extent but not the pattern of distortion caused by MscS and FLAP; lipid headgroups distort in order to interact with very similar but not identical regions in these proteins for all bilayer widths investigated. Introducing anionic lipids into a DPPC bilayer containing the KvAP voltage sensor does not affect the extent of bilayer distortion.  相似文献   

4.
Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect humans and animals. Rabbits are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species (Vorberg et al., 2003). Fortunately, the NMR structure of rabbit prion (124-228) (PDB entry 2FJ3), the NMR structure of rabbit prion protein mutation S173N (PDB entry 2JOH) and the NMR structure of rabbit prion protein mutation I214V (PDB entry 2JOM) were released recently. This paper studies these NMR structures by molecular dynamics simulations. Simulation results confirm the structural stability of wild-type rabbit prion, and show that the salt bridge between D177 and R163 greatly contributes to the structural stability of rabbit prion protein.  相似文献   

5.
Background: Prion diseases are fatal and infectious neurodegenerative diseases affecting humans and animals. Rabbits are one of the few mammalian species reported to be resistant to infection from prion diseases isolated from other species (I. Vorberg et al., Journal of Virology 77 (3) (2003) 2003-2009). Thus the study of rabbit prion protein structure to obtain insight into the immunity of rabbits to prion diseases is very important.Findings: The paper is a straight forward molecular dynamics simulation study of wild-type rabbit prion protein (monomer cellular form) which apparently resists the formation of the scrapie form. The comparison analyses with human and mouse prion proteins done so far show that the rabbit prion protein has a stable structure. The main point is that the enhanced stability of the C-terminal ordered region especially helix 2 through the D177-R163 salt-bridge formation renders the rabbit prion protein stable. The salt bridge D201-R155 linking helixes 3 and 1 also contributes to the structural stability of rabbit prion protein. The hydrogen bond H186-R155 partially contributes to the structural stability of rabbit prion protein.Conclusions: Rabbit prion protein was found to own the structural stability, the salt bridges D177-R163, D201-R155 greatly contribute and the hydrogen bond H186-R155 partially contributes to this structural stability. The comparison of the structural stability of prion proteins from the three species rabbit, human and mouse showed that the human and mouse prion protein structures were not affected by the removing these two salt bridges. Dima et al. (Biophysical Journal 83 (2002) 1268-1280 and Proceedings of the National Academy of Sciences of the United States of America 101 (2004) 15335-15340) also confirmed this point and pointed out that “correlated mutations that reduce the frustration in the second half of helix 2 in mammalian prion proteins could inhibit the formation of PrPSc”.  相似文献   

6.
Three carbamylated derivatives of reduced mouse prion protein (mPrP) were isolated during the aborted oxidative folding in the presence of urea. These three prion protein derivatives (mPrP-a, mPrP-b, and mPrP-c) exist as monomer in the acidic solution (pH < 2.0) and exhibit prevalent random coil structure. However, they undergo rapid aggregation and transformation to a predominant -sheet structure upon exposure to ionic buffer with pH greater than 3.0. The stability of aggregates of mPrP conformers is in part dependent upon the time that they were allowed to develop. The nascent aggregates comprise a significant fraction of loosely packed mPrP monomers that can be dissociated by treatment with strong acidic solution. Matured aggregates acquired through prolonged sample incubation contain more tightly packed mPrP monomers that cannot be dissociated by strong acid but can be disaggregated by denaturant. The properties of reversible aggregation of mPrP-a, mPrP-b, and mPrP-c bear a striking resemblance to that observed with aggregates of hamster PrPSC.  相似文献   

7.
采用分子动力学方法和全原子模型研究尿素和水分子对模型蛋白S-肽链结构转化的影响。模拟结果显示S-肽链的变性速率常数k值随着尿素浓度的增加而先降低后升高,在尿素浓度为2.9 mol/L时达到最低值。模拟了不同尿素浓度下尿素-肽链、水-肽链以及肽链分子氢键的形成状况。结果表明:尿素浓度较低时,尿素分子与S-肽链的极性氨基酸侧链形成氢键,但不破坏其分子内的骨架氢键,尿素在S-肽链水化层外形成限制性空间,增强了S-肽链的稳定性。随着尿素的升高,尿素分子进入S-肽链内部并与其内部氨基酸残基形成氢键,导致S-肽链的骨架氢键丧失,S-肽链发生去折叠。上述模拟结果与文献报道的实验结果一致,从分子水平上揭示了尿素对蛋白质分子结构变化的影响机制,对于研究和发展蛋白质折叠及稳定化技术具有指导意义。  相似文献   

8.
9.
10.
Abstract

The activity of antithrombin (AT), a serpin protease inhibitor, is enhanced by heparin and heparin analogs against its target proteases, mainly thrombin, factors Xa and IXa. Considerable amount of information is available on the multistep mechanism of the heparin pentasaccharide binding and conformational activation. However, much of the details were inferred from ‘static’ structures obtained by X-ray diffraction. Moreover, limited information is available for the early steps of binding mechanism other than kinetic studies with various ligands. To gain insights into these processes, we performed enhanced sampling molecular dynamics (MD) simulations using the Gaussian Accelerated Molecular Dynamics (GAMD) method, applied previously in drug binding studies. We were able to observe the binding of the pentasaccharide idraparinux to a ‘non-activated’ AT conformation in two separate trajectories with low root mean square deviation (RMSD) values compared to X-ray structures of the bound state. These trajectories along with further simulations of the AT-pentasaccharide complex provided insights into the mechanisms of multiple conformational transitions, including the expulsion of the hinge region, the extension of helix D and the conformational behavior of the reactive center loop (RCL). We could also confirm the high stability of helix P in non-activated AT conformations, such states might play an important role in heparin binding. ‘Generalized correlation’ matrices revealed possible paths of allosteric signal propagation to the binding sites for the target proteases, factors Xa and IXa. Enhanced MD simulations of ligand binding to AT may assist the design of new anticoagulant drugs.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
Periplasmic binding proteins from Gram-negative bacteria possess a common architecture, comprised of two domains linked by a hinge region, a fold which they share with the neurotransmitter-binding domains of ionotropic glutamate receptors (GluRs). Glutamine-binding protein (GlnBP) is one such protein, whose crystal structure has been solved in both open and closed forms. Multi-nanosecond molecular dynamics simulations have been used to explore motions about the hinge region and how they are altered by ligand binding. Glutamine binding is seen to significantly reduce inter-domain motions about the hinge region. Essential dynamics analysis of inter-domain motion revealed the presence of both hinge-bending and twisting motions, as has been reported for a related sugar-binding protein. Significantly, the influence of the ligand on GlnBP dynamics is similar to that previously observed in simulations of rat glutamate receptor (GluR2) ligand-binding domain. The essential dynamics analysis of GlnBP also revealed a third class of motion which suggests a mechanism for signal transmission in GluRs.  相似文献   

12.
The structures of fully active cyclin-dependent kinase-2 (CDK2) complexed with ATP and peptide substrate, CDK2 after the catalytic reaction, and CDK2 inhibited by phosphorylation at Thr14/Tyr15 were studied using molecular dynamics (MD) simulations. The structural details of the CDK2 catalytic site and CDK2 substrate binding box were described. Comparison of MD simulations of inhibited complexes of CDK2 was used to help understand the role of inhibitory phosphorylation at Thr14/Tyr15. Phosphorylation at Thr14/Tyr15 causes ATP misalignment for the phosphate-group transfer, changes in the Mg2+ coordination sphere, and changes in the H-bond network formed by CDK2 catalytic residues (Asp127, Lys129, Asn132). The inhibitory phosphorylation causes the G-loop to shift from the ATP binding site, which leads to opening of the CDK2 substrate binding box, thus probably weakening substrate binding. All these effects explain the decrease in kinase activity observed after inhibitory phosphorylation at Thr14/Tyr15 in the G-loop. Interaction of the peptide substrate, and the phosphorylated peptide product, with CDK2 was also studied and compared. These results broaden hypotheses drawn from our previous MD studies as to why a basic residue (Arg/Lys) is preferred at the P+2 substrate position. Figure View of the substrate binding site of the fully active cyclin-dependent kinase-2 (CDK2) (pT160-CDK2/cyclin A/ATP). The pThr160 activation site is located in the T-loop (yellow secondary structure). The G-loop, which partly forms the ATP binding site, is shown in blue. The Thr14 and Tyr15 inhibitory phosphorylation sites located in the G-loop are shown in licorice representation  相似文献   

13.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains.  相似文献   

14.
The human prion protein binds Cu2+ ions in the octarepeat domain of the N-terminal tail up to full occupancy at pH 7.4. Recent experiments have shown that the HGGG octarepeat subdomain is responsible for holding the metal bound in a square-planar configuration. By using first principle ab initio molecular dynamics simulations of the Car–Parrinello type, the coordination of copper to the binding sites of the prion protein octarepeat region is investigated. Simulations are carried out for a number of structured binding sites. Results for the complexes Cu(HGGGW)(wat), Cu(HGGG), and [Cu(HGGG)]2 are presented. While the presence of a Trp residue and a water molecule does not seem to affect the nature of the copper coordination, high stability of the bond between copper and the amide nitrogen of deprotonated Gly residues is confirmed in all cases. For the more interesting [Cu(HGGG)]2 complex, a dynamically entangled arrangement of the two domains with exchange of amide nitrogen bonds between the two copper centers emerges, which is consistent with the short Cu–Cu distance observed in experiments at full copper occupancy.  相似文献   

15.
Outer membrane proteins (OMPs) of Gram-negative bacteria have a variety of functions including passive transport, active transport, catalysis, pathogenesis and signal transduction. Whilst the structures of ∼ 25 OMPs are currently known, there is relatively little known about their dynamics in different environments. The outer membrane protein, OmpA from Escherichia coli has been studied extensively in different environments both experimentally and computationally, and thus provides an ideal test case for the study of the dynamics and environmental interactions of outer membrane proteins. We review molecular dynamics simulations of OmpA and its homologues in a variety of different environments and discuss possible mechanisms of pore gating. The transmembrane domain of E. coli OmpA shows subtle differences in dynamics and interactions between a detergent micelle and a lipid bilayer environment. Simulations of the crystallographic unit cell reveal a micelle-like network of detergent molecules interacting with the protein monomers. Simulation and modelling studies emphasise the role of an electrostatic-switch mechanism in the pore-gating mechanism. Simulation studies have been extended to comparative models of OmpA homologues from Pseudomonas aeruginosa (OprF) and Pasteurella multocida (PmOmpA), the latter model including the periplasmic C-terminal domain.  相似文献   

16.
We use an integrated computational approach to reconstruct accurately the transition state ensemble (TSE) for folding of the src-SH3 protein domain. We first identify putative TSE conformations from free energy surfaces generated by importance sampling molecular dynamics for a fully atomic, solvated model of the src-SH3 protein domain. These putative TSE conformations are then subjected to a folding analysis using a coarse-grained representation of the protein and rapid discrete molecular dynamics simulations. Those conformations that fold to the native conformation with a probability (P(fold)) of approximately 0.5, constitute the true transition state. Approximately 20% of the putative TSE structures were found to have a P(fold) near 0.5, indicating that, although correct TSE conformations are populated at the free energy barrier, there is a critical need to refine this ensemble. Our simulations indicate that the true TSE conformations are compact, with a well-defined central beta sheet, in good agreement with previous experimental and theoretical studies. A structured central beta sheet was found to be present in a number of pre-TSE conformations, however, indicating that this element, although required in the transition state, does not define it uniquely. An additional tight cluster of contacts between highly conserved residues belonging to the diverging turn and second beta-sheet of the protein emerged as being critical elements of the folding nucleus. A number of commonly used order parameters to identify the transition state for folding were investigated, with the number of native Cbeta contacts displaying the most satisfactory correlation with P(fold) values.  相似文献   

17.
18.
Molecular dynamics simulation techniques have been used to study the unbinding pathways of 1α,25-dihydroxyvitamin D3 from the ligand-binding pocket of the vitamin D receptor (VDR). The pathways observed in a large number of relatively short (<200 ps) random acceleration molecular dynamics (RAMD) trajectories were found to be in fair agreement, both in terms of pathway locations and deduced relative preferences, compared to targeted molecular dynamics (TMD) and streered molecular dynamics simulations (SMD). However, the high-velocity ligand expulsions of RAMD tend to favor straight expulsion trajectories and the observed relative frequencies of different pathways were biased towards the probability of entering a particular exit channel. Simulations indicated that for VDR the unbinding pathway between the H1–H2 loop and the β-sheet between H5 and H6 is more favorable than the pathway located between the H1–H2 loop and H3. The latter pathway has been suggested to be the most likely unbinding path for thyroid hormone receptors (TRs) and a likely path for retinoic acid receptor. Ligand entry/exit through these two pathways would not require displacement of H12 from its agonistic position. Differences in the packing of the H1, H2, H3 and β-sheet region explain the changed relative preference of the two unbinding pathways in VDR and TRs. Based on the crystal structures of the ligand binding domains of class 2 nuclear receptors, whose members are VDR and TRs, this receptor class can be divided in two groups according to the packing of the H1, H2, H3 and β-sheet region. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
Ion channels are gated, i.e. they can switch conformation between a closed and an open state. Molecular dynamics simulations may be used to study the conformational dynamics of ion channels and of simple channel models. Simulations on model nanopores reveal that a narrow (<4 A) hydrophobic region can form a functionally closed gate in the channel and can be opened by either a small (approximately 1 A) increase in pore radius or an increase in polarity. Modelling and simulation studies confirm the importance of hydrophobic gating in K channels, and support a model in which hinge-bending of the pore-lining M2 (or S6 in Kv channels) helices underlies channel gating. Simulations of a simple outer membrane protein, OmpA, indicate that a gate may also be formed by interactions of charged side chains within a pore, as is also the case in ClC channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号