首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 968 毫秒
1.
研磨工艺对工件表面粗糙度及残余应力的影响   总被引:1,自引:0,他引:1  
通过试验探讨了研磨过程中磨料粒度、研磨压力和研磨速度等工艺参数对工件表面粗糙度及残余应力的影响。试验结果表明,磨料粒度和研磨压力对工件表面粗糙度的影响较大,而研磨速度的影响较小;研磨使工件表面产生残余压应力,日残余压应力随磨料粒度、研磨压力及研磨速度的增大而增大。  相似文献   

2.
固着磨料抛物面研磨是一种新型的抛物面加工方法,文中从单个磨粒的角度出发,讨论了研磨工艺参数对材料去除率和表面粗糙度的影响,建立了理论预测模型,然后利用计算机辅助软件对不同硬度工件材料的材料去除率和表面粗糙度进行了数值模拟仿真,最后用实验验证了模型的正确性,并得出结论:理论预测模型仅能预测材料去除率和表面粗糙度的变化趋势,并不能代替实验得出具体的实验数值,即固着磨料抛物面研磨的材料去除率与主轴转速、研磨压力的5/4次方成正比,与磨粒浓度的1/4次方成反比;表面粗糙度随磨粒尺寸和研磨压力的增加而增加,随磨粒浓度的增加而减小。  相似文献   

3.
为了实现蓝宝石基片的快速平坦化,对蓝宝石基片进行系统的单因素单面研磨试验,研究了磨料种类、磨料粒径、研磨盘转速、研磨压力以及磨料质量分数等研磨工艺参数对蓝宝石基片材料去除率和表面粗糙度的影响规律。试验结果表明:金刚石磨料适合蓝宝石基片的单面研磨;随着磨料粒径的增大,材料去除率逐渐增大,表面越来越粗糙;随着研磨盘转速的增大,材料去除率先增大后减小,表面粗糙度值在20~60 r/min区间变化不大,稳定在Ra 0. 12~Ra 0. 13μm之间,而在60~100 r/min区间波动较大,当研磨盘转速为60 r/min时,材料去除率最大;随着研磨压力的增大,材料去除率逐渐增大,而表面粗糙度值越来越低;随着磨料质量分数的增大,材料去除率先增大后减小,表面粗糙度先增大然后趋于平缓,当磨料质量分数为3 wt%时,材料去除率最大,且表面粗糙度值相对较小;最后通过正交试验优化了工艺参数,在优化的工艺条件下依次选用粒径为W40、W14、W3的金刚石磨料对蓝宝石基片进行粗研、半精研及精研,取得了表面粗糙度为Ra 7. 9 nm的平坦表面。  相似文献   

4.
路勇  黄云  尹咸  陈育辉 《中国机械工程》2015,26(2):167-170,177
分析了Cu-3镍铜合金砂带磨削加工过程中,砂带粒度和磨削用量的不同对磨削加工效率、工件表面质量和砂带磨损的影响。采用氧化铝磨料砂带在不同的砂带线速度或磨削压力下对镍铜合金进行了工艺试验,对材料去除量、工件表面粗糙度和砂带磨损量进行了测量。研究表明:增加砂带线速度和磨削压力可在一定程度上提高材料去除率和磨削比;随着磨削压力的增大,工件表面粗糙度呈增大趋势;随着砂带粒度的增大,工件表面粗糙度呈减小趋势;砂带线速度为25m/s,磨削压力为43N,砂带粒度为P240时,镍铜合金综合磨削效果最好。  相似文献   

5.
针对核主泵关键部件材料镍基碳化钨涂层,采用三种磨粒粒度金刚石砂轮进行平面磨削试验,研究工艺参数、磨粒粒度对涂层材料磨削力、表面粗糙度和表面残余应力的影响规律。实验结果表明:不同粒度砂轮磨削时,随着磨削深度和工件进给速度增加,法向磨削力和切向磨削力均逐渐增大,表面粗糙度值呈现先增大、后减小再增大的趋势,平行和垂直磨削方向的表面残余压应力逐渐增大,且垂直磨削方向应力值更大。综合考虑磨削力、表面粗糙度、磨削表面残余应力和磨削加工效率,600目砂轮具有较好的加工效果,其对应的优化磨削参数为:磨削深度为10μm,工件进给速度为8 m/min。  相似文献   

6.
利用机械化学研磨的原理对锗片进行高速研磨。以研磨压力、主轴转速、磨料成分和磨料粒度为影响材料的去除率和工件表面粗糙度的主要因素,进行对比性实验,通过实验分析研究确定了的锗片研磨加工工艺,加工后的锗片能够满足使用需要。  相似文献   

7.
方丁  雷勇  龚会民  舒磊  李亮 《工具技术》2021,55(12):30-34
以TC4钛合金为研究对象,在乳化液条件下采用金刚石砂轮对TC4钛合金进行平面磨削试验,对比分析在不同粒度和磨削用量下的磨削表面粗糙度、显微硬度、表面层微观组织及表面残余应力的变化规律.结果 表明:砂轮线速度和磨削深度对零件表面粗糙度和显微硬度的影响比较显著;磨削深度对表面残余应力的影响最大,工件速度次之;从工件表面层微观组织以及砂轮粒度对工件表面粗糙度的影响看,砂轮粒度号越大,砂轮磨削的工件表面质量越好.金刚石砂轮在乳化液条件下磨削TC4钛合金,磨削工件表面均为残余压应力,有利于提高零件的寿命.  相似文献   

8.
试验研究了不同速度下Al_2O_3/(W,Ti) C陶瓷刀具的磨损寿命以及不同后刀面磨损量时对应的切削温度,不同切削速度时刀具后刀面磨损量对表面粗糙度、表面残余应力以及加工硬化等表面完整性的影响规律及机制。结果表明:随着切削速度提高,工件已加工表面粗糙度减小;随着陶瓷刀具后刀面磨损量增加,表面粗糙度先减小后增大;已加工表面的残余压应力随切削速度增大而逐渐减小;表面残余应力随后刀面磨损量增大从残余压应力向残余拉应力转变;随着切削速度的提高,工件表面加工硬化逐渐降低;已加工表面显微硬度值和硬化层深度随后刀面磨损量增加而增大。  相似文献   

9.
在不同直径组合的轴承钢球、不同粒度组合的研磨粉条件下,对轴承套圈进行强化研磨加工试验,并测量了加工后套圈表面的硬度和粗糙度。试验分析结果表明:随着钢球直径的增大,加工后工件表面硬度先增大后减小;研磨粉粒度越大,加工工件表面粗糙度越小,为强化研磨磨料配比的选择提供了依据。通过加工前后轴承套圈表面SEM扫描,发现加工前较加工后表面光洁,但是加工后的套圈表面出现了许多类似于小坑洼的"油囊",使套圈表面具有自润滑功能,因此可以提高润滑油的利用率,并延长轴承使用寿命。  相似文献   

10.
《机械科学与技术》2015,(12):1966-1970
采用4种不同磨料的砂带对Zr O_2工程陶瓷进行对比磨削实验,并采用锆刚玉磨料的砂带进行正交试验,对材料去除量、工件表面粗糙度和砂带磨损量进行了测量,得出了Zr O_2工程陶瓷最佳磨削参数。文章分析了在对Zr O_2工程陶瓷进行砂带磨削加工过程中砂带粒度和磨削用量的不同对磨削加工效率、工件表面质量的影响。在磨粒切削加工模型的基础上,通过观察磨削前后陶瓷表面微观形貌分析了工程陶瓷的磨损机理。实验结果表明:随着磨削压力和砂带粒度的增大,工件表面粗糙度呈减小趋势;增加砂带线速度和磨削压力可在一定程度上提高材料去除率和磨削比,但超过临界值其表面易发生崩脆断裂;砂带线速度为19 m/s,磨削压力为15 N,砂带粒度为120#时,Zr O_2工程陶瓷综合磨削效果达到最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号