首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper presents results of a reliability study of n+polysilicon/Al contacts. The contact resistance of this structure ranged dramatically from sample to sample, and in some cases the contact resistance was extremely large (e.g. 80 kΩ.μm2). In addition, important changes in contact resistance were caused by temperature stress. This variation in contact resistance poses a serious problem in the manufacturability of accurate polysilicon resistors. This paper briefly describes the measurement procedures and measurement data. The measurements used to deduce and analyze the reliability problem include differential resistance and thermal stress. The samples were obtained from three industrial 2 μm CMOS sources. Finally, the paper discusses the data in detail and gives a reason for this reliability problem  相似文献   

2.
Anomalously high parasitic resistance is observed when SiN gate sidewall spacer is incorporated into sub-0.25-μm pMOSFET's. The parasitic resistance in p+ S/D extension region increases remarkably by decreasing BF2 ion implantation energy to lower than 10 keV. It is confirmed that low activation efficiency of boron in p+ extension is the reason for such high parasitic resistance. The reduction of activation efficiency of boron may result from hydrogen passivation of boron acceptor; Fourier transform infrared absorption (FT-IR) measurement suggests that diffused hydrogen from SIN into p+ extension region forms the silicon-hydrogen-boron complex. It is also found that the activation efficiency of boron correlates well both with implantation energy of BF2 and the amorphization rate of substrate. Therefore, in sub-0.25-μm era, the extra amorphization step is essential not only to form a shallow junction but also to enhance boron activation. Germanium preamorphization implantation (Ge PAI) is hence applied to p+ extension of 0.15 μm pMOSFET's. It is finally demonstrated that this Ge PAI process reduces the total parasitic resistance to improve the drain saturation current by up to 10%  相似文献   

3.
The effect of nitrogen (N14)implant into dual-doped polysilicon gates was investigated. The electrical characteristics of sub-0.25-μm dual-gate transistors (both p- and n-channel), MOS capacitor quasi-static C-V curve, SIMS profile, poly-Si gate Rs , and oxide Qbd were compared at different nitrogen dose levels. A nitrogen dose of 5×1015 cm-2 is the optimum choice at an implant energy of 40 KeV in terms of the overall performance of both p- and n-MOSFETs and the oxide Qbd. The suppression of boron penetration is confirmed by the SIMS profiles to be attributed to the retardation effect in bulk polysilicon with the presence of nitrogen. High nitrogen dose (1×1016 cm-2) results in poly depletion and increase of sheet resistance in both unsilicided and silicided p+ poly, degrading the transistor performance. Under optimum design, nitrogen implantation into poly-Si gate is effective in suppressing boron penetration without degrading performance of either p- or n-channel transistors  相似文献   

4.
Previously, we proposed n+-p+ double-gate SOI MOSFET's, which have n+ polysilicon for the back gate and p+ polysilicon for the front gate to enable adjustment of the threshold voltage, and demonstrated high speed operation. In this paper, we establish analytical models for this device, This transistor has two threshold voltages related to n+ and p+ polysilicon gates: Vth1 and Vth2, respectively. V th1 is a function of the gate oxide thickness tOx and SOI thickness tSi and is about 0.25 V when tOx/tSi=5, while Vth2 is insensitive to tOx and tSi and is about 1 V. We also derive models for conduction charge and drain current and verified their validity by numerical analysis. Furthermore, we establish a scaling theory unique to the device, and show how to design the device parameters with decreasing gate length. We show numerically that we can design sub 0.1 μm gate length devices with an an appropriate threshold voltage and an ideal subthreshold swing  相似文献   

5.
Large increases in the latchup holding voltage are demonstrated with the use of shallow source-drain junctions in a sub-0.5 μm CMOS process. Holding voltages well above the supply voltage for 2 μm n +/p+ spacings are demonstrated without the use of complex processes such as retrograde wells or buried layers. SIMS data is presented to verify the reduction in junction depths to 0.15 μm for the p+/n-well and 0.14 μm for the n+/p-well junction. The improvement in holding voltage is attributed to reductions in parasitic bipolar transistor gains, due to the increase in base width. Well behaved transistor characteristics are presented using the shallow junction technology  相似文献   

6.
Submicrometer CMOS transistors require shallow junctions to minimize punchthrough and short-channel effects. Salicide technology is a very attractive metallization scheme to solve many CMOS scaling problems. However, to achieve a shallow junction with a salicide structure requires careful optimization for device design tradeoffs. Several proposed techniques to form shallow titanium silicide junctions are critically examined. Boron, BF2, arsenic, and phosphorus dopants were used to study the process parameters for low-leakage TiSi 2 p+/n and n+/p junctions in submicrometer CMOS applications. It is concluded that the dopant drive-out (DDO) from the TiSi2 layer to form a shallow junction scheme is not an efficient method for titanium salicide structure; poor device performance and unacceptably leaky junctions are obtained by this scheme. The conventional post junction salicide (PJS) scheme can produce shallow n+/p and p+/n junctions with junction depths of 0.12 to 0.20 μm below the TiSi2. Deep submicrometer CMOS devices with channel length of 0.40 to 0.45 μm can be fabricated with such junctions  相似文献   

7.
An advanced TFT memory cell technology has been developed for making high-density and high-speed SRAM cells. The cell is fabricated using a phase-shift lithography that enables patterns with spaces of less than 0.25 μm to be made using the conventional stepper. Cell area is also reduced by using a small cell-ratio and a parallel layout for the transistor. Despite the small cell-ratio, stable operation is assured by using advanced polysilicon PMOS TFT's for load devices. The effect of the Si3N4 multilayer gate insulator on the on-current and the influence of the channel implantation are also investigated. To obtain stable operation and extremely low stand-by power dissipation, a self-aligned offset structure for the polysilicon PMOS TFT is proposed and demonstrated. A leakage current of only 2 fA/cell and an on-/off-current ratio of 4.6×106 are achieved with this polysilicon PMOS TFT in a memory cell, which is demonstrated in a experimental 1-Mbit CMOS SRAM chip that has an access time of only 7 ns  相似文献   

8.
An optimal device structure for integrating bipolar and CMOS is described. Process design and device performance are discussed. Both the vertical n-p-n and MOS devices have non-overlapping super self-aligned (NOVA) structures. The base-collector and source/drain junction capacitances are significantly reduced. This structure allows complete silicidation of active polysilicon electrodes, cutting down the parasitic resistances of source, drain, and extrinsic base. The critical gate and emitter regions are protected from direct reactive ion etching exposure and damage. All shallow junctions are contacted by polysilicon electrodes which suppress silicide-induced leakage. An arsenic buried layer minimizes collector resistance and collector-substrate capacitance. A novel selective epitaxy capping technique suppresses lateral autodoping from the arsenic buried layer. Fully recessed oxide with polysilicon buffer layer is used to achieve a low defect density device isolation. CMOS with Leff=1.1 μm and W n/Wp=10 μm/10 μm exhibits averaged ring oscillator delay of 128 ps/stage. An n-p-n transistor with fT, of 14 GHz and low-power emitter-coupled logic ring oscillator with a delay of 97 ps/stage have been fabricated  相似文献   

9.
The switching performance of 0.10 μm CMOS devices operating at room temperature has been discussed on the basis of both experimental and simulated results. The measured propagation delay time of a 0.10 μm gate length CMOS has been quantitatively divided into intrinsic and parasitic components for the first time. The results have shown that the drain junction capacitance strongly affects the propagation delay time in the present 0.10 μm CMOS. The switching performance of a 0.10 μm ground rule CMOS has been simulated by using device parameters extracted from the experimental results. In the 0.10 μm ground rule CMOS, it has been shown that an increase of the contact resistance will degrade the propagation delay time, which is one of the most essential problems in further device miniaturization. It has been also demonstrated that even if the specific contact resistance ρc is reduced to be less than 1×10-7 Ω cm, further reduction of the gate overlap capacitance Cov will be required to achieve the propagation delay time to be less than 10 ps in the 0.10 μm ground rule CMOS at room temperature  相似文献   

10.
Under cryogenic operation, a low Vth realizes a high speed performance at a greatly reduced power-supply voltage, which is the most attractive feature of Cryo-CMOS. It is very important in sub-0.25 μm Cryo-CMOS devices to reconcile the miniaturization and the low Vth. Double implanted MOSFET's technology was employed to achieve the low Vth while maintaining the short channel effects immunity. We have investigated both the DC characteristics and the speed performance of 0.25 μm gate length CMOS devices for cryogenic operation. The measured transconductances in the saturation region were 600 mS/mm for 0.2 μm gate length n-MOSFET's and 310 mS/mm for 0.25 μm gate length p-MOSFET's at 80 K. The propagation delay time in the fastest CMOS ring oscillator was 22.8 ps at Vdd=1 V at 80 K. The high speed performance at extremely low power-supply voltages has been experimentally demonstrated. The speed analysis suggests that the sub-l0 ps switching of Cryo-CMOS devices will be realized by reducing the parasitic capacitances and through further miniaturization down to 0.1 μm gate length or below  相似文献   

11.
A thermal van der Pauw test structure   总被引:3,自引:0,他引:3  
A micromachined thermal van der Pauw test structure is reported. Similar in principle to the conventional electrical van der Pauw Greek cross test structures, it enables the in-plane thermal sheet conductivities of thin films to be determined. The microstructure was fabricated using a commercial CMOS application-specific integrated circuit process followed by anisotropic silicon etching. It consists of a cross-shaped sandwich of the dielectric CMOS layers isolated from the bulk silicon by four narrow suspension arms. Integrated polysilicon resistors make it possible to generate controlled amounts of heat power and to measure local temperature changes to determine the thermal response of the structure. The measurement principle exploits the analogy between the two-dimensional (2-D) heat flow in thin film samples and the electrical current pattern in thin film conductors. A thermal sheet resistance of 1.87×105 K/W was extracted from the complete sandwich of the dielectric CMOS layers. This resistance is equivalent to an average in-plane thermal conductivity of the dielectric layer sandwich of κ=1.44 W m-1 K-1. Thermal finite element simulations showed that the radiative heat loss from the structure has a negligible effect on the extracted κ value  相似文献   

12.
A 1-Mb (128 K×8-bit) CMOS static RAM (SRAM) with high-resistivity load cell has been developed with 0.8-μm CMOS process technology. Standby power is 25 μW, active power 80 mW at 1-MHz WRITE operation, and access time 46 ns. The SRAM uses a PMOS bit-line DC load to reduce power dissipation in the WRITE cycle, and has a four-block access mode to reduce the testing time. A small 4.8×8.5-μm2 cell has been realized by triple-polysilicon layers. The grounded second polysilicon layer increases cell capacitance and suppresses α-particle-induced soft errors. The chip size is 7.6×12.4 mm2  相似文献   

13.
A self-aligned pocket implantation (SPI) technology is discussed. This technology features a localized pocket implantation using the gate and drain electrodes (TiSi2 film) as well as self-aligned masks. The gate polysilicon is patterned by KrF excimer laser lithography. The measured minimum gate length Lg (the physical gate length) is 0.21 μm for both N- and P-MOSFETs. A newly developed photoresist was used to achieve less than quarter-micrometer patterns. This process provides high punchthrough resistance and high current driving capability even in such a short channel length. The subthreshold slope of the 0.21-μm gate length is 76 mV/dec for N-MOSFETs and 83 mV/dec for P-MOSFETs. The SPI technology maintains a low impurity concentration in the well (less than 5×10 16 cm-3). The drain junction capacitance is decreased by 36% for N-MOSFETs and by 41% for P-MOSFETs, compared to conventional LDD devices, which results in high-speed circuit operation. The delay time per stage of a 51-stage dual-gate CMOS ring oscillator is 50 ps with a supply voltage of 3.3 V and a gate length of 0.36 μm, and 40 ps with a supply voltage of 2.5 V and a gate length of 0.21 μm  相似文献   

14.
The fabrication of sub-0.1-μm CMOS devices and ring oscillator circuits has been successfully explored. The key technologies include: lateral local super-steep-retrograde (SSR) channel doping with heavy ion implantation, 40-nm ultrashallow source/drain (S/D) extension, 3-nm nitrided gate oxide, dual p+/n+ poly-Si gate electrode, double sidewall scheme, e-beam lithography and RIE etching for sub-0.1-μm poly-Si gate pattern, thin and low sheet resistance SALICIDE process, etc. By these innovations in the technologies, high-performance sub-0.1-μm CMOS devices with excellent short-channel effects (SCEs) and good driving ability have been fabricated successfully; the shortest channel length is 70 nm. 57 stage unloaded 0.1-μm CMOS ring oscillator circuits exhibiting delay 23.8 ps/stage at 1.5 V, and 17.5 ps/stage and 12.5 ps/stage at 2 V and 3 V, respectively, are achieved  相似文献   

15.
A novel process which uses N2+ implantation into polysilicon gates to suppress the agglomeration of CoSi2 in polycide gated MOS devices is presented. The thermal stability of CoSi2/polysilicon stacked layers can be dramatically improved by using N2+ implantation into polysilicon. The sheet resistance of the samples without N2+ implantation starts to increase after 875°C RTA for 30 s, while the sheet resistance of CoSi2 film is not increased at all after 950 and 1000°C RTA for 30 s if the dose of nitrogen is increased up to 2×1015 cm-2 and 6×1015 cm2, respectively, and TEM photographs show that the agglomeration of CoSi2 film is completely suppressed. It is found that the transformation to CoSi2 from CoSi is impeded by N2+ implantation such that the grain size of CoSi2 with N2+ implantation is much smaller than that without N2+ implantation. As a result, the thermal stability of CoSi2 is significantly improved by N2+ implantation into polysilicon  相似文献   

16.
In this letter a n+-polysilicon gate PMOSFET with indium doped buried-channel is discussed, The gate length scaling of n +-polysilicon gate buried-length PMOSFET's is limited by the channel punch-through effect. Designing shallow counter-doped layers (buried-channels) has been established as a means to reduce the undesirable short channel effects in these devices. Indium, an acceptor dopant in Si, has a low diffusion coefficient and implant statistics favorable for achieving shallow doping layers. Indium implants are explored (as an alternative to BF2) to counter dope the n-tub for adjusting the threshold voltage. Devices are fabricated using AT&T's 0.5 μm CMOS technology but with tox=50 Å. Although no special effort has been made to optimize the n-tub or to take full advantage of the diffusion and implant characteristics of indium, excellent electrical results are obtained for devices with Leff=0.25 μm. Improved Vth roll-off characteristics and reduced body effect (γ≈0.18 V½ versus γB≈0.40 V½) in indium implanted buried channels are demonstrated over BF2 implanted buried channels for PMOSFET's with identical long channel threshold voltages. The effects of incomplete ionization (freeze-out) of the indium acceptor states on the electrical device characteristics are demonstrated by device simulations and measurements  相似文献   

17.
A new process for thin titanium self-aligned silicide (Ti-SALICIDE) on narrow n+ poly-Si lines and n+ diffusion layers using preamorphization implantation (PAI) with heavy ions of antimony (Sb) and germanium (Ge) has been demonstrated for application to 0.2-μm CMOS devices and beyond. Preamorphization enhances the phase transformation from C49TixSi x to C54TiSi2 and lowers the transformation temperature by 80°C so that it occurs before conglomeration in narrow lines. Preamorphization by Sb and Ge implantation yields better results than that by As. The sheet resistance of TiSi2 on heavily As doped poly-Si lines are 3.7 Ω/□ and 3.8 Ω/□ for the samples preamorphized by Ge and Sb implantations even with line width down to 0.2 μm. There is less leakage in the Ti-SALICIDE diode with preamorphization than without it. The probable reasons and mechanisms are discussed  相似文献   

18.
A low-resistance self-aligned Ti-silicide process featuring selective silicon deposition and subsequent pre-amorphization (SEDAM) is proposed and characterized for sub-quarter micron CMOS devices. 0.15-μm CMOS devices with low-resistance and uniform TiSi2 on gate and source/drain regions were fabricated using the SEDAM process. Non-doped silicon films were selectively deposited on gate and source/drain regions to reduce suppression of silicidation due to heavily-doped As in the silicon. Silicidation was also enhanced by pre-amorphization, using ion-implantation, on the narrow gate and source/drain regions. Low-resistance and uniform TiSi2 films were achieved on all narrow, long n+ and p+ poly-Si and diffusion layers of 0.15-μm CMOS devices. TiSi2 films with a sheet resistance of 5 to 7 Ω/sq were stably and uniformly formed on 0.15-μm-wide n+ and p+ poly-Si. No degradation in leakage characteristics was observed in pn-junctions with TiSi2 films. It was confirmed that, using SEDAM, excellent device characteristics were achieved for 0.15-μm NMOSFET's and PMOSFET's with self-aligned TiSi2 films  相似文献   

19.
This paper presents an improved figure-of-merit (FOM) for CMOS performance which includes the effect of gate resistance. Performance degradation due to resistive polysilicon gates is modeled as an additional delay proportional to the RC product of a polysilicon line. The new FOM is verified from delay measurements on inverter chains fabricated using a 0.25-μm CMOS process. A furnace TiSi2 process is used to underscore the effect of increased sheet resistance of narrow polysilicon lines. Excellent correlation between measured and predicted inverter chain delays is obtained over a variety of design, process and bias conditions. An expression for the gate sheet resistance requirement is derived from the new FOM. Using this expression, requirements on the gate sheet resistance are calculated corresponding to a technology roadmap for performance and oxide thickness  相似文献   

20.
Submicrometer-channel CMOS devices have been integrated with self-aligned double-polysilicon bipolar devices showing a cutoff frequency of 16 GHz. n-p-n bipolar transistors and p-channel MOSFETs were built in an n-type epitaxial layer on an n+ buried layer, and n-channel MOSFETs were built in a p-well on a p+ buried layer. Deep trenches with depths of 4 μm and widths of 1 μm isolated the n-p-n bipolar transistors and the n- and p-channel MOSFETs from each other. CMOS, BiCMOS, and bipolar ECL circuits were characterized and compared with each other in terms of circuit speed as a function of loading capacitance, power dissipation, and power supply voltage. The BiCMOS circuit showed a significant speed degradation and became slower than the CMOS circuit when the power supply voltage was reduced below 3.3 V. The bipolar ECL circuit maintained the highest speed, with a propagation delay time of 65 ps for CL=0 pF and 300 ps for CL=1.0 pF with a power dissipation of 8 mW per gate. The circuit speed improvements in the CMOS circuits as the effective channel lengths of the MOS devices were scaled from 0.8 to 0.4 μm were maintained at almost the same ratio  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号