首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid composition of the diet has various effects on atherosclerosis risk factors. Dietary saturated fatty acids (SFA) and trans‐unsaturated fatty acids increase the low‐density lipoprotein (LDL)‐/high‐density lipoprotein (HDL)‐cholesterol ratio in serum, while these fats do not have a significant bearing on serum triglyceride levels. By contrast, dietary monounsaturated fatty acids (MUFA), n‐6 polyunsaturated fatty acids (PUFA), and α‐linolenic acid (C18:3n‐3) similarly reduce LDL cholesterol concentrations, while their influence on serum HDL cholesterol and triglycerides is not appreciable. Dietary long‐chain n‐3 PUFA slightly increase serum LDL cholesterol concentrations, but are nevertheless considered salubrious with regard to serum lipids due to the distinct triglyceride‐lowering effects. MUFA‐rich compared to n‐6 PUFA‐rich diets strongly reduce the in vitro oxidizability of LDL. The available studies on this subject also suggest that n‐3 PUFA in the small amounts usually present in the diet are not unduly harmful. These findings are consistent with reports from observational studies: the amount of SFA is positively and the amount of MUFA and n‐6 PUFA in the diet is inversely associated with the risk of cardiovascular disease in most epidemiological studies. The available studies have had an impact on current dietary guidelines, which unanimously recommend that most of the dietary fat should be in the form of MUFA, while the amount of SFA and trans fatty acids in the diet should be as low as possible.  相似文献   

2.
The effects of dietary monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid+MUFA/saturated fatty acid (PUFA+MUFA/SFA) ratio on plasma and liver lipid concentrations were studied. In experiment I, when rats were fed with 40% fat (energy%, PUFA/SFA ratio 1.0) and 1% (w/w) cholesterol (C) diets for 21 d, a large amount of MUFA (28.1 energy%, PUFA+MUFA/SFA=5.7) in the diet was found to increase the plasma total C, triacylglycerol (TAG), and phospholipid (PL) as compared with the low-MUFA diet (7.0 energy%, PUFA+MUFA/SFA=1.4). The plasma very low density lipoprotein (VLDL)-C, VLDL-TAG, VLDL-PL, and low density lipoprotein (LDL)-C increased significantly in the high-MUFA diet group, but high density lipoprotein (HDL)-C did not change significantly. The high-MUFA diet resulted in greater accumulation of liver C but lesser accumulation of TAG. In experiment II, when dietary SFA was fixed at a certain level (13.2 energy%; PUFA+MUFA/SFA=2.0), rats given a larger amount of MUFA (23.1 energy%; PUFA/MUFA=0.2; MUFA/SFA=1.8) showed higher plasma and liver C levels than did the low-MUFA diet (7.7 energy%; PUFA/MUFA=2.5; MUFA/SFA=0.6). When PUFA was fixed at a certain level (24.4 energy%), there was not a significant difference in the plasma C level between the high-and low-MUFA dietary groups (PUFA+MUFA/SFA=4.8 and 8.4), but the higher PUFA+MUFA/SFA diet, which was high in MUFA/SFA ratio, significantly decreased the plasma HDL-C and TAG levels. However, when MUFA content was fixed at a certain level (16.4 energy%), no significant difference was observed between the two groups with different PUFA/SFA ratios of 0.2 and 4.1, but liver C level was raised in the higher PUFA/SFA diet. It appears that the PUFA/SFA ratio alone is unsuitable to predict the change of plasma C level, because a large amount of dietary MUFA may lead to an increase of plasma and liver lipids in rats. It seems that the prerequisites for keeping low plasma and liver C are (i) low MUFA/SFA ratio, (ii) high PUFA/MUFA ratio, and (iii) PUFA+MUFA/SFA ratio not to exceed 2.  相似文献   

3.
Bioavailability of dietary β-carotene (BC) is dependent on dose, quantity, dispersion, and presence of fat in the diet. Fats are comprised of a variety of fatty acids, which may impact the bioavailability of carotenoids. However, there is a gap in research on whether specific fatty acid classes affect serum BC concentrations in population samples. The primary objective of this study was to assess the association between reported fat and fatty acid intake and serum BC concentrations utilizing data from the National Health and Nutrition Examination Surveys (NHANES) 2003–2006. Data from 3278 NHANES participants 20–85 years old were analyzed to estimate the relationships between serum BC concentrations and reported saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acid intakes. Multiple linear regression estimated ln(serum BC) based on reported fatty acid intakes adjusted for age, sex, race/ethnicity, and reported dietary BC intakes. Mean and standard error (SE) for serum BC concentrations were 14.31 ± 0.05 μg/dl. Means and SE for total fat, SFA, MUFA, and PUFA were 85.7 ± 1.3, 26.9 ± 0.4, 31.1 ± 0.5, and 17.8 ± 0.4 g, respectively. There was a significant trend for association between serum BC and reported total fat intakes (r = −0.002, p < 0.0001), but the association was not strong. Multiple linear regression showed positive associations between serum BC concentrations and higher reported dietary PUFA consumption. PUFA alpha-linolenic acid intakes are positively associated with serum BC concentrations, while MUFA palmitoleic acid and SFA stearic acid were inversely associated with serum BC. The inverse association between MUFA and SFA suggests there may be multiple post-digestion factors affecting serum carotenoid concentrations.  相似文献   

4.
The effect of dietary conjugated linoleic acid (CLA) supplementation in combination with fat from vegetable versus animal origin on the fatty acid deposition, including that of individual 18:1 and 18:2 (conjugated and non-conjugated) isomers, in the liver and muscle of obese rats was investigated. For this purpose, 32 male Zucker rats were randomly assigned to one of four diets containing palm oil or ovine fat, supplemented or not with 1% of 1:1 cis(c)9,trans(t)11 and t10,c12 CLA isomers mixture. Total fatty acid content decreased in the liver and muscle of CLA-fed rats. In the liver, CLA increased saturated fatty acids (SFA) in 11.9% and decreased monounsaturated fatty acids (MUFA) in 6.5%. n-3 Polyunsaturated fatty acids (PUFA) relative proportions were increased in 30.6% by CLA when supplemented to the ovine fat diet. In the muscle, CLA did not affect SFA but decreased MUFA and PUFA percentages. The estimation of Δ9-indices 16 and 18 suggested that CLA inhibited the stearoyl-CoA desaturase activity in the liver (a decrease of 13–38%), in particular when supplemented to the ovine fat diet. Concerning CLA supplementation, the t10,c12 isomer percentage was 60–80% higher in the muscle than in the liver. It is of relevance that rats fed ovine fat, containing bio-formed CLA, had more c9,t11 CLA isomer deposited in both tissues than rats fed palm oil plus synthetic CLA. These results highlight the importance to further clarify the biological effects of consuming foods naturally enriched in CLA, alternatively to CLA dietary supplementation.  相似文献   

5.
The study was carried out to investigate the changes in saturated (SFA), monoene (MUFA), trans (TFA), and polyunsaturated (PUFA) fatty acids and the key fatty acid ratios (SFA/UFA, cis PUFA/SFA, C18:2/C16:0 and C18:3/C16:0) during potato chips frying in canola oil using single bounce attenuated total reflectance FTIR (SB‐ATR‐FTIR) spectroscopy. The data obtained from GC‐FID were used as reference. The calibration of main fat groups and their key fatty acid ratios were developed by partial least square (PLS) regression coefficients using 4000 to 650 cm?1 spectral range. FTIR PLS regression for the predicted SFA, MUFA, TFA, and PUFA were found 0.999, 0.998, 0.998, and 0.999, respectively, whereas for SFA/UFA, cis PUFA/SFA, C18:2/C16:0 and C18:3/C16:0 the regression coefficients were 0.991, 0.997, 0.996, and 0.994, respectively. We conclude that FTIR‐PLS could be used for rapid and accurate assessment of changes in the main fat groups and their key fatty acid ratios ratio during the frying process. Practical applications: FTIR‐ATR method is very simple, rapid, and environmentally friendly. No sample preparation is required and one drop of oil is enough for FTIR analysis. The proposed method could be applied for quick determination of key fatty acid ratios in the food processing industry.  相似文献   

6.
The objective of this study was to demonstrate that changing the fatty acid composition of bovine adipose tissue concurrently changed (i) proportions of triacylglycerol species, (ii) fatty acid composition of triacylglycerol species, and (iii) positional distribution of the component fatty acids of the triacylglycerol species. To achieve this, we took advantage of adipose tissue lipids, from cattle fed in Australia and Japan, that varied widely in fatty acid composition and melting points. Treatment groups produced in Australia were cattle fed: a cornbased diet (MUFA1); a grain-based diet containing whole cottonseed (SFA); a grain-based diet containing protected cottonseed oil (PUFA); and a grain-based diet that resulted in high contents of trans fatty acids (TFA). Treatment groups produced in Japan (MUFA2 and MUFA3) were diets of unknown composition fed for over 300 d. The MUFA1, MUFA2, and MUFA3 samples all were rich in monounsaturated fatty acids, varying only in the proportions of the individual monounsaturates. The SFA, PUFA, and TFA samples had relatively high concentrations of stearic acid (18:0), PUFA, and TFA, respectively. Slip points (indicative of melting points) were 45.1, 41.5, 38.5, 30.7, 28.4, and 22.8°C, for the SFA, TFA, PUFA, MUFA1, MUFA2, and MUFA3 groups, respectively (P<0.05). Triacylglycerols were separated by high-performance liquid chromatography on a silver nitrate-impregnated column into sn-1,2,3-saturated fatty acid triacylglycerol (SSS); [triacylglycerols containing two saturated acids and one trans-monounsaturated fatty acid (SSMt sn-positions unknown)]; sn-1-saturated, 2-monounsaturated, 3-saturated triacylglycerol (SMS); sn-1-saturated, 2-monounsaturated, 3-trans-monounsaturated triacylglycerol (SMMt); sn-1-saturated, 2,3-monounsaturated fatty acid triacylglycerol (SMM); sn-1-saturated, 2-polyunsaturated, 3-trans-monounsaturated triacylglycerol; sn-1,2,3-monounsaturated fatty acid triacylglycerol (MMM); and sn-1-saturated, 2-polyunsaturated, 3-monounsaturated triacylglycerol. Fatty acid methyl esters of each triacylglycerol species also were determined, and further analysis indicated sn-2, and sn-1/3 positions. As the percentage oleic acid increased in the total lipid extract, the proportions of SMM and MMM increased (e.g., from 31.4 and 2.4% in the SFA group to 55.4 and 17.8% in the MUFA3 group). The elevated 18:0 in the SFA group (26%) was reflected in increased percentages of SSS and SSM, and caused an increase in the proportion of 18:0 in all triacylglycerol species relative to the other treatment groups. The percentage of 18:0 in the sn-1/3 positions was elevated markedly in the SMS fraction of the SFA group (to 44%); this would account for the high melting point of the fat of these animals. We conclude that long-term feeding of cattle is sufficient to produce significant alterations in fatty acid composition in bovine adipose tissue. Alterations in the fatty acid composition of bovine adipose tissue changed both the distribution and the composition of the triacylglycerol species, which, in turn, accounted for marked differences in melting points among treatment groups.  相似文献   

7.
In this study, the effects of temperature on the fatty acids profile and the effects of temperature on the degree of unsaturation of fatty acids of Oreochromis niloticus were investigated. The analysis was performed by gas chromatography. The study showed that there were large temperature variations (10.0–32.0°C) during the study period (January–December). The highest crude fat content was found in January (3380 mg/100 g) and the lowest in June (2050 mg/100 g). The fatty acids profile showed significantly different diversity (p < 0.05). Total saturated fatty acid (∑SFA) content ranged from 409.54 to 1297.61 mg/100 g, monounsaturated fatty acid (∑MUFA) from 207.68 to 665.81 mg/100 g, and polyunsaturated fatty acid (∑PUFA) from 175.12 to 972.23 mg/100 g. The ∑MUFA and ∑PUFA concentrations were highest in January and lowest in June, and the ∑SFA concentration was lowest in January and highest in June. EPA and DHA contents were highest in January (198.96 mg/100 g) and lowest in June (48.76 mg/100 g). The contents of omega-3 (653.17 mg/100 g) and omega-6 fatty acids (252.54 mg/100 g) were highest in January and lowest in June (ω-3; 106.43 and ω-6; 60.91 mg/100 g). It concluded that the degree of unsaturation of fatty acids increases with decreasing temperature. In this study, the nutritional quality of the FAs profile was assessed using lipid quality indices. The indices indicating dietary quality of lipids by their values: Atherogenic index (0.47), thrombogenic index (0.38), hypocholesterolemic to hypercholesterolemic (3.00), meat fat quality (6.78), ω6/ω3 ratio (0.39), PUFA/SFA (2.37), MUFA/SFA (1.62), PUFA/MUFA (1.46), and PUFA + MUFA/SFA (3.99). These values are within the recommended range, indicating that the lipid profile of O. niloticus has high nutritional quality, which can be further improved by harvesting the fish during the winter season. Due to the nutritional importance of O. niloticus, the culture of this species could have significant interest to the people of Karachi, especially the coastal communities. To promote the nutritional diet in local population, the government should support the aquaculture of Nile tilapia.  相似文献   

8.
Hyperphagia was achieved by continuous intracerebroventricular infusion of a melanocortin receptor antagonist (HS024; Neosystem, Strasbourg, France) in rats. The effects of hyperphagia on FA composition and concentration of plasma phospholipids (PL), plasma FFA, and adipose tissue TAG were studied in rats for 8 d [short-term hyperphagia (STH); n=8], or 28 d [longterm hyperphagia (LTH); n=9]. The control rats were treated with artificial cerebrospinal fluid for 8 d (n=8) or 28 d (n=10). The rats were fed the same regular diet. In STH rats the plasma PL and fasting plasma FFA contained higher concentrations of saturated FA (SFA) and monounsaturated FA (MUFA), and plasma FFA contained lower n−6 PUFA than in the control rats. In LTH rats the plasma PL contained higher concentrations of SFA, MUFA, and n−3 PUFA and higher proportions of 16∶1n−7 and 18∶1n−9 at the expense of 18∶2n−6 than in the control rats. In LTH rats the abundant dietary intake of 18∶2n−6 did not enrich 18∶2n−6 of the plasma PL or adipose tissue TAG. In LTH rats the fasting plasma FFA contained more than twofold higher concentrations of SFA and MUFA, and higher proportions of 16∶1n−7 and 18∶1n−9 at the expense of 18∶2n−6 than in the control rats. This animal obesity model shows that LTH affects the FA composition and concentration of plasma PL, plasma FFA, and adipose tissue TAG, a result consistent with changes associated with increased risk of various diseases in humans. These results also demonstrate that LTH alters the FA composition of plasma PL and adipose tissue TAG in a way that does not reflect the FA composition of dietary fat.  相似文献   

9.
Previous work has shown that dietary lipids alter femur lipid composition. Specifically, we have shown that exposure to high saturated fatty acid (SFA) diets in utero, during suckling, or post‐weaning alters femur total lipid composition, resulting in higher percent bone mass in males and females and bone mineral density (BMD) in female offspring with no effect on bone mineral outcomes in dams. Comparatively, high n‐3 polyunsaturated fatty acid (PUFA) diets increase femur polar (PL) lipid n‐3 content, which has been associated with increased bone mineral content and strength. However, the extent that PL or triacylglycerol (TAG) lipids change with high SFA diets is unknown. The current investigation examined the influence of a high SFA diet (20 % lard by weight) on femur PL and TAG lipid composition in 5‐month old female Wistar rats (fed high SFA diet from age 28 days onwards; dams) and their 19‐day old offspring (exposed to high SFA in utero and during suckling; pups). High SFA exposure resulted in increased monounsaturates and decreased n‐3 and n‐6 PUFA in the TAG fraction in both dams and pups, and higher SFA and n‐6:n‐3 ratio in dams only. The PL fraction showed decreased n‐6 PUFA in both dams and pups. The magnitude of the diet‐mediated responses, specifically TAG 18:1 and PL n‐6 PUFA, may have contributed to the previously reported altered BMD, which was supported with correlation analysis. Future research should investigate the relationship of diet‐induced changes in bone lipids on bone structure, as quantified through micro‐computed tomography.  相似文献   

10.
We studied the effect of four rapeseed oils with different fatty acid profiles on parameters implicated in the pathogenesis of atherosclerosis in humans in a model experiment with hamsters. The hamsters were divided into seven groups and fed a semi‐synthetic, cholesterol‐enriched diet (5 g/kg diet) containing 15% of the fat in question for a period of six weeks. The following rapeseed oils were used: (1) conventional rapeseed oil (6% saturated fatty acids [SFA], 64% monounsaturated fatty acids [MUFA], 18% linoleic acid [LA], 9% α‐linolenic acid [ALA]), (2) linoleic acid‐rich rapeseed oil (6% SFA, 61% MUFA, 28% LA, 2% ALA), (3) oleic acid‐rich rapeseed oil (6% SFA, 74% MUFA, 11% LA, 5% ALA), (4) myristic acid‐rich rapeseed oil (11% myristic acid, 35% SFA, 44% MUFA, 14% LA, 5% ALA). Sunflower oil, olive oil and lard were used as control fats. The concentrations of the lipids in the plasma, in the lipoprotein fractions and in the liver, the fatty acid composition of various tissues, the tocopherol status and the susceptibility of low‐density lipoproteins (LDL) to in vitro‐oxidation were determined. The concentrations of total cholesterol found in the plasma and in the LDL fraction and the ratios of LDL to HDL were similar after feeding the four different types of rapeseed oil, sunflower oil and olive oil. Lard produced the highest concentrations of cholesterol in plasma and the LDL fraction and the highest ratio of LDL to HDL. Feeding conventional, oleic acid‐ and myristic acid‐rich rapeseed oils resulted in markedly lower ratios of arachidonic to eicosapentaenoic acid in the lipids of the liver and the erythrocytes. This is considered beneficial for the formation of eicosanoids. The lag‐time before the onset of peroxidation of the LDL lipids, induced by copper ions, was not statistically significant between the seven hamster groups suggesting that the susceptibility of LDL to lipid peroxidation was similar after feeding all types of fat. Considering all parameters obtained in the used hamster model it is obvious that all four rapeseed oils are at least as favourable as olive oil or sunflower oil.  相似文献   

11.
Oil (healthier lipid combination of olive, linseed and fish oils)‐in‐water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI) and microbial transglutaminase (MTG)) were used as pork backfat replacers in low‐fat frankfurters. Composition (proximate analysis and fatty acid profile), sensory analysis and technological (processing and purge losses, texture and colour) properties of frankfurters were analysed as affected by the type of oil‐in‐water emulsion and by chilling storage (2°C, 41 days). Frankfurters produced with oil combinations had lower levels of saturated fatty acids (SFA, 19.3%), similar levels of MUFA (46.9%) and higher levels of PUFA (33.6%) than control frankfurters (all pork fat) (39.3, 49.5 and 10.6%, respectively). PUFA/SFA and n‐6/n‐3 PUFA ratios in control sample were 0.27 and 9.27; in reformulated frankfurters the PUFA/SFA ratio was higher (1.7) and the n‐6/n‐3 PUFA ratio was lower (0.47). In general, frankfurters had good fat and water binding properties. Colour parameters were affected by formulation and storage time. Compared to control sample, frankfurters made with oil‐in‐water emulsions had higher (p<0.05) hardness, springiness and chewiness values. Emulsified oil stabilizing systems did not affect sensory characteristics of frankfurters, and all products were judged as acceptable.  相似文献   

12.
Seasonal variation of octopus (Octopus vulgaris) lipid composition was investigated in four tissues: arm, mantle, ovary and digestive gland. A non‐homogeneous fat distribution was observed, with the digestive gland exhibiting a higher (p <0.05) lipid content than the other tissues. The ovary showed a higher (p <0.05) fat content than both muscle tissues, reaching its highest (p <0.05) value in winter. Neutral lipids – free fatty acids (FFA), triacylglycerols, and sterols (ST) – exhibited their highest (p <0.05) concentrations in the digestive gland and their lowest (p <0.05) values in muscle tissues. The phospholipid (PL) content of the ovary was the highest (p <0.05) of all tissues analysed, with the PL content also being significantly (p <0.05) higher in the digestive gland than in arm and mantle. The concentrations of most lipid classes (FFA, PL and ST) exhibited a seasonal variation. The fatty acid composition showed a remarkable difference between the digestive gland and all other tissues analysed. Thus, the digestive gland exhibited higher (p <0.05) contents in monounsaturated fatty acids and also lower (p <0.05) contents in both saturated (SFA) and polyunsaturated (PUFA) fatty acids. The highest mean values in SFA and PUFA were observed in ovary and muscle tissues, respectively. A seasonal effect was observed for SFA and PUFA.  相似文献   

13.
The incorporation of vaccenic acid (VA, 0.5 and 1.2%), conjugated linoleic acid (CLA, mixture of primarily c9,t11‐ and t10,c12‐CLA, 1.2%), linoleic acid (LA, 1.2%) and oleic acid (OA, 1.2%) into different tissues of mice was examined. The effects on the fatty acid composition of triacylglycerols (TAG) and phospholipids (PL) in kidney, spleen, liver and adipose tissue were investigated. VA and CLA (c9,t11‐ and t10,c12‐CLA) were primarily found in TAG, especially in kidney and adipose tissue, respectively. Conversion of VA to c9,t11‐CLA was indicated by our results, as both fatty acids were incorporated into all the analyzed tissues when a diet containing VA but not c9,t11‐CLA was fed. Most of the observed effects on the fatty acid profiles were seen in the CLA group, whereas only minor effects were observed in the VA groups compared with the OA group. Thus, CLA increased n‐3 polyunsaturated fatty acids (PUFA) in PL from kidney and spleen and lowered the ratio of n‐6/n‐3 PUFA in these tissues. Furthermore, CLA increased C22 PUFA in the PL fraction of kidney, spleen and liver, but reduced the level of arachidonic acid in PL of liver and spleen and lowered the Δ9‐desaturation indexes in all analyzed tissue TAG.  相似文献   

14.
Weanling rats were fed on high-fat (178 g/kg) diets which contained 4.4 g α-linolenic (ALA), γ-linolenic, arachidonic (ARA), eicosapentaenoic (EPA), or docosahexaenoic acid (DHA)/100 g total fatty acids. The proportions of all other fatty acids, apart from linoleic acid, and the proportion of total polyunsaturated fatty acids (PUFA) (approximately 35 g/100 g total fatty acids) were constant, and the n−6 to n−3 PUFA ratio was maintained as close to 7 as possible. The fatty acid compositions of the serum and of spleen leukocytes were markedly influenced by that of the diet. Prostaglandin E2 production was enhanced from leukocytes from rats fed the ARA-rich diet and was decreased from leukocytes from the EPA- or DHA-fed rats. Replacing dietary ALA with EPA resulted in diminished ex vivo lymphocyte proliferation and natural killer (NK) cell activity and a reduced cell-mediated immune response in vivo. In contrast, replacing ALA with DHA reduced ex vivo lymphocyte proliferation but did not affect ex vivo NK cell activity or the cell-mediated immune response in vivo. Replacement of a proportion of linoleic acid with either γ-linolenic acid or ARA did not affect lymphocyte proliferation, NK cell activity, or the cell-mediated immune response. Thus, this study shows that different n−3 PUFA exert different immunomodulatory actions, that EPA exerts more widespread and/or stronger immunomodulatory effects than DHA, that a low level of EPA is sufficient to influence the immune response, and that the immunomodulatory effects of fish oil may be mainly due to EPA.  相似文献   

15.
Structured lipids (SL), formulated by blends of lard and soybean oil in different ratios, were subjected to continuous enzymatic interesterification catalyzed by an immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) in a continuous packed bed reactor. The original and interesterified blends were examined for fatty acid and triacylglycerol composition, regiospecific distribution, and solid fat content. Blends of lard and soybean oil in the proportions 80:20 and 70:30 (w/w), respectively, demonstrated a fatty acid composition, and proportions of polyunsaturated/saturated fatty acids (PUFA/SFA) and monounsaturated/polyunsaturated fatty acids (MUFA/PUFA), that are appropriate for the formulation of pediatric products. These same blends were suited for this purpose after interesterification because their sn-2 positions were occupied by saturated fatty acids (52.5 and 45.4%, respectively), while unsaturated fatty acids predominantly occupied sn-1,3 positions, akin to human milk fat. Interesterification caused rearrangement of triacylglycerol species.  相似文献   

16.
The influence of the distribution of polyunsaturated fatty acids on the glycerol backbone of dietary triacylglycerols on the fatty acid profile of adipose tissue and muscle phospholipids was investigated in growing‐finishing pigs (48) and broiler chicken (84). The animals were fattened on barley/soybean meal diets supplemented with a blend of soybean oil and beef tallow, either in the ratio 3:1 w/w (high‐PUFA) or 1:3 w/w (low‐ PUFA). Part of the high‐ and low‐PUFA blends was chemically interesterified to randomly distribute all fatty acids over the three positions of the glycerol. Thus, two sets of diets of identical overall fatty acid composition, but differing in the distribution of fatty acids in the triacylglycerols, were fed. Growth performance and carcass composition were neither affected by fatty acid composition nor by randomisation of dietary fats in either animal species. Apparent digestibility of energy was slightly lower in pigs fed the low‐PUFA blends. Fatty acid profile of subcutaneous fat of pigs and broilers as well as of internal body fat (lamina subserosa) and muscle phospholipids of pigs varied according to the dietary fatty acid composition but was not affected by randomisation of dietary fats. These findings are explained in terms of the hydrolysis of TAG during transport of lipids from enterocytes to adipose tissue cells and the continuous lipolysis and re‐esterification of fatty acids that take place in adipose tissue cells.  相似文献   

17.
The effects of natural mixed diets on lipid peroxidation were investigated in humans. In the first study, 59 subjects were fed a rapeseed oil-based diet rich in monounsaturated fatty acids (MUFA) and a sunflower oil-based diet rich in polyunsaturated fatty acids (PUFA) in a cross-over manner for three and a half weeks. The lipid peroxidation products in plasma were determined by measuring conjugated dienes and malondialdehyde (MDA). In a second study, plasma thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, and the susceptibility of very low density lipoprotein + low-density lipoprotein (LDL) toin vitro oxidation were measured from subjects fed similar MUFA and PUFA diets for six week diets. No significant differences in plasma MDA or conjugated diene concentrations were found after the rapeseed oil diet or the sunflower oil diet in Study 1. In the second study, a small but significant decrease (P<0.05) in both lipid hydroperoxides and TBARS was observed in the LDL fraction after the sunflower oil diet. Thein vitro oxidation gave opposite results, showing increased oxidation after the sunflower oil diet. Despite a high intake of α-tocopherol during the oil peroids, no increase in plasma α-tocopherol was noticed in either study. The results suggest that moderate changes in the fatty acid composition in the Western-type diet may be adequate to affect lipoprotein susceptibility to oxidationin vitro, but there is considerable disparity with some indices ofin vivo lipid peroxidation.  相似文献   

18.
Recent studies suggest that dietary krill oil leads to higher omega-3 polyunsaturated fatty acids (n-3 PUFA) tissue accretion compared to fish oil because the former is rich in n-3 PUFA esterified as phospholipids (PL), while n-3 PUFA in fish oil are primarily esterified as triacylglycerols (TAG). Tissue accretion of the same dietary concentrations of PL- and TAG-docosahexaenoic acid (22:6n-3) (DHA) has not been compared and was the focus of this study. Mice (n = 12/group) were fed either a control diet or one of six DHA (1%, 2%, or 4%) as PL-DHA or TAG-DHA diets for 4 weeks. Compared with the control, DHA concentration in liver, adipose tissue (AT), heart, and eye, but not brain, were significantly higher in mice consuming either PL- or TAG-DHA, but there was no difference in DHA concentration in all tissues between the PL- or TAG-DHA forms. Consumption of PL- and TAG-DHA at all concentrations significantly elevated eicosapentaenoic acid (20:5n-3) (EPA) in all tissues when compared with the control group, while docoshexapentaenoic acid (22:5n-6) (DPA) was significantly higher in all tissues except for the eye and heart. Both DHA forms lowered total omega-6 polyunsaturated fatty acids (n-6 PUFA) in all tissues and total monounsaturated fatty acids (MUFA) in the liver and AT; total saturated fatty acid (SFA) were lowered in the liver but elevated in the AT. An increase in the DHA dose, independent of DHA forms, significantly lowered n-6 PUFA and significantly elevated n-3 PUFA concentration in all tissues. Our results do not support the claim that the PL form of n-3 PUFA leads to higher n-3 PUFA tissue accretion than their TAG form.  相似文献   

19.
Meal fatty acids have been shown to modulate the size and composition of triacylglycerol (TAG)-rich lipoproteins influencing the magnitude and duration of the postprandial plasma TAG response. As a result there is considerable interest in the origin of these meal fatty-acid induced differences in particle composition. Caco-2 cells were incubated over 4 days with fatty acid mixtures resembling the composition of saturated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA)-rich meals fed in a previous postprandial study to determine their impact on lipoprotein synthesis and secretion. The MUFA- and PUFA-rich mixtures supported greater intracellular TAG, but not cholesterol accumulation compared with the SFA-rich mixture (P < 0.001). The MUFA-rich mixture promoted significantly greater TAG and cholesterol secretion than the other mixtures and significantly more apolipoprotein B-100 secretion than the PUFA-rich mixture (P < 0.05). Electron microscopy revealed the SFA-rich mixture had led to unfavourable effects on cellular morphology, compared with the unsaturated fatty acid-rich mixtures. Our findings suggest the MUFA-rich mixture, may support the formation of a greater number of TAG-rich lipoproteins, which is consistent with indirect observations from our human study. Our electron micrographs are suggestive that some endocytotic uptake of MUFA-rich taurocholate micelles may promote greater lipoprotein synthesis and secretion in Caco-2 cells.  相似文献   

20.
Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega‐3 polyunsaturated fatty acids (n‐3PUFA). Therefore, in a randomised cross‐over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega‐6 polyunsaturated fatty acids (n‐6PUFA), in conjunction with n‐3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL‐C), high density lipoprotein cholesterol (HDL‐C) and triacylglycerol (TAG)] and n‐3PUFA incorporation into plasma lipids over a 6‐h period. The incremental area under the curve for plasma cholesterol, LDL‐C, HDL‐C, TAG and n‐3PUFA levels over 6 h was similar in the n‐6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n‐6PUFA when consumed with n‐3PUFA; however, sex‐differences in response to dietary fat type are worthy of further attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号