首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对电网故障下的双馈风力发电机组(Doubly-Fed Induction Generations, DFIG)的低电压穿越问题,提出装设电阻型高温超导故障限流器(High Temperature Superconducting Fault Current limiter, HTS-FCL)的低电压穿越保护策略。基于HTS-FCL的电特性与温度特性,采用热电类比法建立了详细的HTS-FCL仿真模型。基于DFIG的暂态模型,推导了电网故障下的DFIG暂态响应,分析了HTS-FCL保护投入后其参数对DFIG暂态响应的影响,采用模糊优化与粒子群算法相结合的方法优化了HTS-FCL的主要参数。仿真结果表明,HTS-FCL参数优化结果有较好的适用性,所提策略能够实现电网严重故障下的DFIG低电压穿越。  相似文献   

2.
SMES用于双馈发电机故障穿越的研究   总被引:1,自引:0,他引:1  
近年来随着风电并网容量的迅速增加,风电场脱网对电力系统的影响日益严重。本文首先介绍了风电场故障穿越的技术要求,将双馈感应发电机(DFIG)控制系统分为风机控制分系统、转子侧和定子侧变频器控制分系统,然后建立超导磁储能(SMES)3阶相量模型,并采用SMES提高DFIG故障穿越能力和动态响应速度,最后在Matlab/Simulink中搭建SMES+DFIG仿真模型,并采用中国的低电压穿越(LVRT)标准和美国的高电压穿越(HVRT)标准验证SMES辅助风电机组实现故障穿越的能力。  相似文献   

3.
基于Crowbar的双馈机组风电场等值模型与并网仿真分析   总被引:2,自引:0,他引:2  
针对双馈机组(DFIG)风电场并网中亟须解决的低电压穿越问题,提出了一种基于Crowbar的双馈机组风电场等值方法。通过对DFIG在电网故障情况下的机理分析,给出了电网故障时DFIG转子电流的表达式。根据DFIG转子电流值判别是否投入Crowbar,将DFIG风电场分为投入与不投入Crowbar两组;运用容量加权法计算各组参数,建立DFIG风电场的双机等值模型。算例仿真分析表明,DFIG风电场的双机等值模型能够较准确地反映电网故障期间风电场变化,采用快速无功补偿提高了风电场的低压穿越能力。  相似文献   

4.
电网故障时风电场基于STATCOM的无功协调控制策略   总被引:1,自引:0,他引:1  
牛远方 《中国电力》2011,44(3):11-15
为充分发挥双馈感应风力发电机组(DFIG)在电网故障时的无功功率调节能力,采用静止无功补偿器(STATCOM)进行补偿,建立风电场无功实时协调控制系统(CRRCS)。CRRCS可通过监测电网故障状态、撬棍保护(crowbar)动作状态、风电机组运行状态及公共连接点(PCC)电压水平等信息,实时协调处理风电场各机组、STATCOM及PCC的无功电压控制策略。同时进一步采用故障时刻的极限功率控制模式,以降低crowbar动作概率,保障机组的无功功率调节能力。仿真分析证明,该方法可有效保证电网故障时DFIG的无功调节能力,并控制补偿单元及风电场,为电网提供无功和电压支撑,协助实现风电场的故障穿越运行。  相似文献   

5.
胡兰青  孙丽玲 《电机与控制应用》2017,44(5):108-115, 127
为了研究定子绕组匝间短路(SWITSC)故障对双馈风力发电机组高压穿越的影响,基于多回路理论建立了计及定子绕组匝间短路故障的双馈感应发电机(DFIG)仿真模型,并在MATLAB/Simulink下建立了其S-函数。依据短路故障回路特性,分别在SWITSC前后建立了DFIG风电机组的ABC坐标系统和dq0坐标系统下的数学模型,并简要分析了SWITSC故障下的电磁特性。对双馈风电机组的高压穿越能力做出分析,分析了风电场电压升高的原因、高压穿越的标准及双馈风机在电网电压骤升下的暂态过程。重点研究了DFIG在SWITSC故障前后高压穿越的仿真结果。结果表明,定子绕组匝间短路故障会严重降低风电场的高压穿越的能力。  相似文献   

6.
电网故障情况下,双馈风电机组(DFIG)的故障电流特性非常复杂,特别是DFIG的撬棒保护未动作时,其馈入电网的故障电流与其所采用的低电压穿越控制策略以及网侧变流器(GSC)特性等因素有关。为满足含DFIG的电网故障分析和保护整定计算的需求,针对DFIG的几种典型低电压穿越控制策略,分别建立了计及GSC电流影响的DFIG统一稳态故障电流计算模型,并通过数字仿真验证了所提出的故障电流计算模型的正确性。  相似文献   

7.
通过VSC-HVDC技术进行大规模风电场并网可以不受传输距离的限制,隔离线路两端网络减少故障之间的相互影响,并可以自动换相,运行不需要借助于外部电源,因此VSC-HVDC被视为较理想的风电场并网方式。在分析VSC-HVDC的风电场并网系统的稳态控制策略及运行特性的基础上,当交流电网发生故障扰动时,对VSC-HVDC联网的风电场并网系统的故障穿越能力进行了研究。给出了传统的直流泄放电阻的故障穿越方法,并提出了一种基于风电机组惯性支持的故障穿越方法。通过对双馈风电机组(DFIG)组成的风电场经VSC-HVDC并网的系统进行仿真分析,验证了该方法能够在交流电网发生故障时迅速响应,防止VSC-HVDC直流过电压,提高了系统的故障穿越能力。  相似文献   

8.
针对风电场低压穿越(Low Voltage Ride Through, LVRT)能力提升问题,以并网型中大规模风电场为研究对象,从整个风电场层面出发,分析了故障扰动场景下双馈风机(Doubly-fed Induction Generator, DFIG)的暂态特性及LVRT能力。利用RBF(Radial Basis Function)神经网络对切除后的DFIG转子电流暂态过程进行有效拟合,提出了一种撬棒保护自适应投切策略。算例仿真结果表明,RBF神经网络对故障后转子侧最大电流预测较为准确,能够有效避免撬棒的重复投切。该策略进一步提升了故障场景下风电场的无功支撑和LVRT能力,显著提高了风电场运行的安全稳定性水平。  相似文献   

9.
针对双馈异步风力发电机(DFIG)有功、无功解耦控制的性能,建立了基于DFIG的风力发电机模型,仿真分析了利用风机本身无功潜在能力改善风电并网时由故障引起的电压不稳定.仿真结果表明,DFIG自身具备无功补偿能力,可抑制风电场的电压波动,在系统故障后提供无功支撑,能够提高风电场自身的低电压穿越能力.  相似文献   

10.
由高压直流输电系统换相失败引起的送端风电场母线低高电压连续故障,会对双馈感应发电机(DFIG)产生严重的暂态冲击,现有单一的风机低压、高压故障穿越方案难以完全适应此类连续故障穿越的要求。为此,提出了一种结合重构式网侧变流器与超导磁储能装置的软硬件协同穿越方案,以提升DFIG的连续故障穿越能力。在故障期间,网侧变流器由并联运行模式切换至串联运行模式,以维持定子端电压不变为目标,并控制转子侧变流器根据并网点电压自适应发出动态感性/容性无功电流。仿真结果表明,所提方案既可以维持DFIG的机端电压,又可以为电网提供无功支撑,有效地实现DFIG的低高电压连续故障穿越。  相似文献   

11.
韩笑  王毅  张志恒 《电力情报》2014,(1):26-31,51
通过VSC HVDC技术进行大规模风电场并网可以不受传输距离的限制,隔离线路两端网络减少故障之间的相互影响,并可以自动换相,运行不需要借助于外部电源,因此VSC HVDC被视为较理想的风电场并网方式。在分析VSC HVDC的风电场并网系统的稳态控制策略及运行特性的基础上,当交流电网发生故障扰动时,对VSC HVDC联网的风电场并网系统的故障穿越能力进行了研究。给出了传统的直流泄放电阻的故障穿越方法,并提出了一种基于风电机组惯性支持的故障穿越方法。通过对双馈风电机组(DFIG)组成的风电场经VSC HVDC并网的系统进行仿真分析,验证了该方法能够在交流电网发生故障时迅速响应,防止VSC HVDC直流过电压,提高了系统的故障穿越能力。  相似文献   

12.
电网故障导致电压跌落时,大容量风电场中风机的相继切出会影响系统运行的稳定性。为保证电网安全可靠运行,风力发电机组的并网导则要求目前广泛应用的双馈感应发电机(DFIG)具备低电压穿越(LVRT)能力,即确保电网电压跌落情况下DFIG保持不脱网运行。本文在深入分析传统Crowbar保护电路的基础上,针对其不足提出了组合保护方案并给出了相应的控制策略。基于Matlab/Simulink平台建立了风电场并网运行仿真模型,仿真结果表明所提组合保护方案能够有效提高DFIG的低电压穿越能力。  相似文献   

13.
提出一种基于串联动态制动电阻(SDBR)的低电压主动保护方法,在电网故障时吸收由于电网电压跌落引起的不平衡功率,保证故障期间双馈风电机组不脱网运行。分析SDBR对DFIG的暂态影响,提出SDBR的投切控制策略。根据低电压穿越(LVRT)规范对无功功率的要求,研究转子侧变流器无功补偿控制方式。利用PSCAD/EMTDC仿真平台,建立基于SDBR的双馈风电系统仿真模型,对三相对称故障时DFIG的低电压穿越能力进行仿真研究。仿真结果表明,串联动态制动电阻能够有效的抑制定、转子过电流,限制直流母线过电压,从而提高DFIG的低电压穿越能力,保证风电系统的不脱网运行。  相似文献   

14.
在双馈风机(DFIG)中使用Crowbar电路是提高风机低电压穿越能力的一种常用措施,为协调Crowbar与风电场集电线路保护动作之间的关系,提出了集电线路电流保护新的整定方法与控制策略。在Matlab/Simulink中建立了含有Crowbar电路的风电场并网模型,投入Crowbar能够有效提高风机抵御电网电压跌落的性能,但使得风电场集电线路故障电流峰值减小并迅速衰减,对此针对电流速断保护提出采用功率方向元件判断故障区结合快速保护算法,并对整定值进行修正,后备保护采用自保持电路并增加电压判据的控制策略。仿真结果表明,该策略能够满足风电场联络线故障的可靠切除及主网故障时低电压穿越运行的要求。  相似文献   

15.
针对双馈感应发电机(DFIG),提出了一种基于超级电容器(SC)储能的动态电压调节器(DVR)实现电压穿越的协调控制策略.在电网电压故障时,基于SC的DVR对DFIG端口电压进行完全补偿,使得DFIG端口电压始终维持在正常水平;并通过DFIG和基于SC的DVR协调控制,减少DFIG在故障期间输出的有功功率,从而减少故障期间所需的DVR功率和容量.在MATLAB/Simulink环境下搭建仿真模型,分别进行了对称和不对称故障下的零电压穿越、低电压穿越和高电压穿越仿真.仿真结果证明了所提出的协调控制策略的有效性.  相似文献   

16.
当电网发生故障时,风电场容易自动解列而导致故障更加严重,因此风电机组应具备一定的故障穿越能力。本文提出将高温超导故障限流器应用于风电场,以提高风电场低电压穿越的能力。通过建立高温超导限流器模型以及含高温超导限流器的风电机组并网模型,然后仿真在不同故障类型和不同拓扑下高温超导限流器对风电场故障穿越能力的影响。研究表明,使用高温超导限流器能够有效提高风电机组在系统发生单相、多相故障下的穿越能力,同时,提高单回线与双回线送出电能的风电场模型故障穿越能力。  相似文献   

17.
双馈感应发电机(DFIG)虚拟同步控制策略可使DFIG为电网提供频率与电压支撑,改善其并网特性。现有虚拟同步控制策略的主要目标是模拟同步发电机机电动态特性,未深入探讨电磁暂态过程中如何对DFIG进行控制。分析了电网发生不对称故障时,基于虚拟同步控制的DFIG的故障特性;得出了现有虚拟同步控制策略难以抑制DFIG故障电流与电磁转矩振荡的结论。在此基础上,提出了一种适用于电网不对称故障的DFIG电压补偿虚拟同步控制策略,该策略通过补偿转子电压的故障分量来改善DFIG转子电压的响应速度,抵消或削弱转子反电势故障分量的影响。仿真对比了现有虚拟同步控制策略与所提出策略的控制效果,验证了所提策略能够显著降低DFIG转子故障电流,抑制电磁转矩的暂态冲击与持续振荡,有效提高DFIG不对称故障穿越能力。  相似文献   

18.
经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though, LVRT)。  相似文献   

19.
在机组故障期间转子Crowbar投入不能为电网提供无功支持同时会从电网吸收一定无功从而导致电网运行情况进一步恶化,针对Crowbar保护的弊端提出一种低电压穿越方法,利用DC-Chopper代替Crowbar,同时在故障情况下通过对转子侧变流器进行解耦控制,控制定子侧给电网提供一定无功支持,能更好的实现机组故障穿越。基于此策略在PSCAD平台上搭建了的双馈风电场仿真模型,对比验证了风电场具有低电压穿越能力及控制策略的优越性。在此基础上,分别仿真分析不同故障类型下双馈风电场的故障特性。研究结果表明传统转子Crowbar电路的投入是机组故障电流频率为非工频的原因,而采用其他非转子Crowbar电路的机组故障电流频率为工频;风电场联络线发生任何类型的不对称接地故障,风电场侧都会表现出弱电源特性,单相接地故障表现出的弱电源特性更为明显。这对故障选相元件将会受到严重影响。研究成果具有一定的实际价值和意义。  相似文献   

20.
经VSC-HVDC并网风电系统在风电场侧故障时,风电机组出口母线电压过低,极易引起风力机脱网。而双馈风力发电机(DFIG)传统的Crowbar技术在故障时将转子侧变流器(RSC)短接,使发电机定子侧失去了为电网提供无功的能力,风力机的低电压穿越能力较低。提出一种改进的DFIG模型,加入了主动式DC-Chopper,与传统的Crowbar相配合,降低Crowbar动作的概率,使得DFIG转子侧变流器可以控制定子侧在故障时期继续提供无功功率。并利用此改进的DFIG与VSC-HVDC协调控制,改善风电场侧母线电压水平。通过算例仿真表明,在严重故障时采用改进式DFIG的Crowbar仍未动作。从而大大降低Crowbar动作的概率,双馈风电机组RSC故障期间可以继续投入运行并为电网提供无功支持。完成故障期间DFIG两侧变流器与VSC-HVDC风电场侧变流器(WFVSC)之间的无功协调,使风电场具有更好的低电压穿越能力(Low Voltage Ride Though,LVRT)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号