首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
钛含量对20MnMoB钢奥氏体晶粒度及晶粒粗化温度的影响   总被引:1,自引:0,他引:1  
研究了钛含量对20 Mn Mo B钢奥氏体晶粒度及奥氏体晶粒粗化温度的影响。结果表明,有效钛( Tie)是决定20 Mn Mo B钢奥氏体晶粒度和晶粒粗化温度的主要参数。随( Tie)含量增加,试验用钢的奥氏体晶粒尺寸减小,晶粒粗化温度提高。当 Tie 超过0.037% 时,钢的奥氏体本质晶粒度可达7 级以上,晶粒粗化温度提高到1 000℃以上。  相似文献   

2.
热处理对25CrNi3MoV钢组织与力学性能的影响   总被引:1,自引:0,他引:1  
通过采用金相、电镜观察和力学试验等方法研究了奥氏体化温度和回火温度对25CrNi3MoV钢的组织和力学性能的影响.结果表明,25CrNi3MoV钢在950~1050 ℃奥氏体化时,由于V的碳化物充分溶解,晶粒出现异常长大.25CrNi3MoV钢的低温冲击韧性与晶粒尺寸之间符合扩展的Hall-Petch关系.随着回火温度升高,25CrNi3MoV钢中析出的碳化物粗化,其抗拉强度降低,冲击韧性升高.  相似文献   

3.
借助低压真空渗碳炉、金相显微镜以及硬度计研究了12Cr2Ni4、18Cr2Ni4WA和20Cr Mn Ti渗碳钢在不同渗碳工艺下的奥氏体晶粒粗化行为。结果表明,12Cr2Ni4钢和18Cr2Ni4WA钢的适宜渗碳温度分别为950℃和1 000℃;更高的温度才能使20Cr Mn Ti钢达到奥氏体晶粒明显粗化效果。3种渗碳钢的奥氏体粗化规律均符合Beck方程。碳浓度小于共析浓度时将促进奥氏体晶粒粗化,达到共析浓度时奥氏体晶粒粗化现象减弱。  相似文献   

4.
研究了不同预处理工艺对调质处理前后ZG25CrNiMo钢组织和力学性能的影响。结果表明,ZG25CrNiMo铸钢具有粗晶组织遗传特性。单一的890℃×2 h正火预处理对组织遗传改善能力有限,通过950℃×2 h高温正火+890℃×2 h正火预处理则可以消除组织遗传特性、细化奥氏体晶粒。在两次正火基础上进行一次670℃×6 h退火处理,能细化晶粒,使钢消除残余内应力;再经调质处理后,ZG25CrNiMo钢抗拉强度达到800 MPa以上,-45℃低温冲击吸收能量达到50 J以上。  相似文献   

5.
研究了不同Nb含量的20CrMnTiH齿轮钢的奥氏体晶粒长大行为。采用光学显微镜和透射电镜分析了试验钢分别加热到950~1200℃奥氏体化保温1 h后的奥氏体晶粒变化和析出相情况。结果表明,随着Nb含量的增加,晶粒粗化温度不断提高。保温时间为1 h的情况下,每增加0.03%Nb,晶粒粗化温度提高50℃;超过晶粒粗化温度后,含Nb析出相的数量因溶解而大大降低,对晶界的钉扎作用消失,奥氏体晶粒长大。  相似文献   

6.
研究了热轧工艺对20MnMoB钢奥氏体晶粒度的影响,结果表明,试验用钢的奥氏体晶粒粗化温度随压下率增大而降低,热轧温度对试验用钢的奥氏体晶粒粗化度影响较小。  相似文献   

7.
V-Ti-N微合金化钢是适于再结晶控轧的新钢种。该系列钢具有高的奥氏体晶粒粗化温度,低的奥氏体再结晶温度以及热变形后小的晶粒粗化速度。同其它控轧钢一样,该钢也是靠细化晶粒来达到强韧化的。微合金化钢奥氏体实际晶粒的显示对研究控轧钢是十分重要的。本文介绍V-Ti-N微合金化钢奥氏体实际晶粒显示的一些经验。试验用料为25kg中频感应炉冶炼的,其典型成分见表1。首先分别将铸态和轧态试料加工成5×5×8mm规格的金相样品,然后将它们加热到各种不同温度保温1小时后,淬入10%NaOH水溶液中。此时基体组织全为板条马氏体。一般认为,当磷含量低时微合金钢原奥氏体晶粒难于显示。为此不得不采用长时间  相似文献   

8.
研究了单独与复合添加V/Nb/Al元素对Q345钢奥氏体晶粒长大行为的影响规律。以ASTM晶粒度级别等于6.0定义实验用钢的实用奥氏体晶粒粗化温度。结果表明:和Fe-V处理相比,以VN12进行微合金化可使Q345钢的奥体氏晶粒粗化温度提高约40℃;和Fe-Nb处理相比,Nb和V复合加入对Q345钢晶粒粗化温度无显著影响;Al微合金化Q345钢中复合添加微量Nb对其晶粒粗化温度无明显影响。Nb、V、Al的抗奥氏体晶粒粗化能力依次为:Nb>Al>V。  相似文献   

9.
以Ti微合金马氏体钢为研究对象,通过光学显微镜、扫描电镜等手段,研究了加热温度对试验钢奥氏体晶粒大小的影响,同时研究了奥氏体化温度对试验钢组织和力学性能的影响。结果表明,随着加热温度的升高,试验钢的奥氏体晶粒呈增大趋势,晶粒粗化温度为1050 ℃。随着重新奥氏体化温度升高,奥氏体晶粒呈现先细化再粗化的过程,880 ℃下奥氏体晶粒最细,抗拉强度和屈服强度分别达到1657 MPa和1343 MPa,韧性优于传统马氏体钢。  相似文献   

10.
通过金相显微分析方法研究了3种不同成分的低碳微合金钢再加热奥氏体化后晶粒粗化行为,探讨了第二相粒子对奥氏体晶粒的钉扎作用.结果表明:3种钢的粗化温度分别为:A钢1100℃,B和C钢为1050℃.在900~1000℃,第二相粒子数量较多,奥氏体晶界几乎被完全钉扎,奥氏体晶粒的粗化速率较低.温度继续升高,第二相粒子数量下降,奥氏体晶粒开始异常长大.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
吴玉梅  熊晓云  靳蓉  孙敬民  杨林  罗晓星 《金属学报》2005,10(10):1100-1103
目的: 观察本实验室合成的一种治疗阿尔茨海默氏症(AD)的药物(1-二甲基磷酰基-2, 2, 2 -三氯)-乙基-1-醇烟酸醋(NMF),对体外培养的皮层神经细胞活性的影响以及对海人藻酸(KA)所致的神经损伤的保护作用。方法: 采用体外培养皮层神经元的方法,解剖分离 15 d胚胎小鼠皮层神经细胞, 接种于 96孔板,48 h 后加药并培养 72 h,以 MIT 法 观察 NMF 对小鼠皮层神经细胞活性的影响;同时将接种于 24 孔板的细胞预先给予 NMF,d 3 时加或不加KA处理后,以台盼蓝染色鉴别并计数死、活细胞,可得出细胞的存活率。结果: NMF 明显促进胎鼠皮层神经元活性,其中 NMF1、0. 1、10nmol·L-1促进神经元活性增殖率分别高达 34.7%、37.4%、36. 7%, NMF 明显促进正常胎鼠皮层神经元存活卒,与对照组比较,10nmol·L-1 NMF 对皮层神经元的存活率分别提高 39.3%、73.5%。 NMF能显著 对抗 KA 所致的神经元损伤,与 KA 损伤组相比, NMF0.1、10、10nmol·L-1对损伤皮层神经元的保护率分别为 77.30%、80.10%、84.15%。结论: NMF 明 显促进胎鼠皮层神经元的洁性、提高正常皮层神经元,的存活卒,并能有效地保护KA所致的神经元损伤,提示 NMF 是一种很有潜力的治疗 AD 的药物。  相似文献   

14.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

15.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

16.
Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases. As a key feature of microstructure, the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys. This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation. We found that the ferrite grain tends to grow into an elongated plate-like shape, independent of its initial confi guration. The fi nal shape of the ferrite is closely related to the misfi t between the two phases, with the longest direction and the broad facet of the plate being, respectively, consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC) method. The strain energy calculation in the framework of Eshelby's inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable. It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.  相似文献   

17.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

18.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

19.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

20.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号