首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for the determination of the two enantiomers of mirtazapine in human blood plasma by high-performance liquid chromatography. Measurements were performed on drug free plasma spiked with mirtazapine and used to prepare and validate standard curves. Levels of enantiomers of mirtazapine were also measured in patients being treated for depression with racemic mirtazapine. Mirtazapine was separated from plasma by solid-phase extraction using CERTIFY columns. Chromatographic separation was achieved using a Chiralpak AD column and pre-column and compounds were detected by their absorption at 290 nm. Imipramine was used as an internal standard. The assay was validated for each analyte in the concentration range 10–100 ng/ml. The coefficient of variance was 16% and 5.5% for(+)-mirtazapine for 10 and 100 ng/ml control specimens respectively and 15% and 7.3% for mirtazapine for 10 and 100 ng/ml control specimens respectively. This assay is appropriate for use in the clinical range. The range of plasma mirtazapine concentrations from eleven patients taking daily doses of 30–45 mg of racemate was <5 to 69 ng/ml for (+)-mirtazapine and 13–88 ng/ml for (−)-mirtazapine for blood specimens collected 10–17.5 h after taking the dose.  相似文献   

2.
A HPLC method with automated column switching and UV detection is described for the simultaneous determination of retinol and major retinyl esters (retinyl palmitate, retinyl stearate, retinyl oleate and retinyl linoleate) in human plasma. Plasma (0.2 ml) was deproteinized by adding ethanol (1.5 ml) containing the internal standard retinyl propionate. Following centrifugation the supernatant was directly injected onto the pre-column packed with LiChrospher 100 RP-18 using 1.2% ammonium acetate–acetic acid–ethanol (80:1:20, v/v) as mobile phase. The elution strength of the ethanol containing sample solution was reduced by on-line supply of 1% ammonium acetate–acetic acid–ethanol (100:2:4, v/v). The retained retinol and retinyl esters were then transferred to the analytical column (Superspher 100 RP-18, endcapped) in the backflush mode and chromatographed under isocratic conditions using acetonitrile–methanol–ethanol–2-propanol (1:1:1:1, v/v) as mobile phase. Compounds of interest were detected at 325 nm. The method was linear in the range 2.5–2000 ng/ml with a limit of quantification for retinol and retinyl esters of 2.5 ng/ml. Mean recoveries from plasma were 93.4–96.5% for retinol (range 100–1000 ng/ml) and 92.7–96.0% for retinyl palmitate (range 5–1000 ng/ml). Inter-assay precision was ≤5.1% and ≤6.3% for retinol and retinyl palmitate, respectively. The method was successfully applied to more than 2000 human plasma samples from clinical studies. Endogenous levels of retinol and retinyl esters determined in female volunteers were in good accordance with published data.  相似文献   

3.
Aplidine (dehydrodidemnin B) is a new marine-derived depsipeptide with a powerful cytotoxic activity, which is under early clinical investigation in Europe and in the US. In order to investigate the pharmacokinetic properties of this novel drug, an HPLC–tandem mass spectrometry method was developed for the determination of aplidine in biological samples. Didemnin B, a hydroxy analogue, was used as internal standard. After protein precipitation with acetonitrile and extraction with chloroform, aplidine was chromatographed with a RP octadecylsilica column using a water–acetonitrile linear gradient in the presence of formic acid at the flow-rate of 500 μl/min. The method was linear over a 5–100 ng/ml range (LOD=0.5 ng/ml) in plasma and over a 1.25–125 ng/ml range (LOD=0.2 ng/ml) in urine with precision and accuracy below 14.0%. The intra- and inter-day precision and accuracy were below 12.5%. The extraction procedure recoveries for aplidine and didemnin B were 69% and 68%, respectively in plasma and 91% and 87%, respectively in urine. Differences in linearity, LOQ, LOD and recoveries between plasma and urine samples seem to be matrix-dependent. The applicability of the method was tested by measuring aplidine in rat plasma and urine after intravenous treatment.  相似文献   

4.
In order to determine epirubicin and its metabolites at low concentrations (<38 ng/ml) in small plasma samples, a fast reliable method based on a precipitation pre-treatment and sensitive reversed-phase isocratic HPLC has been developed and validated for epirubicin in the range 5–100 ng/ml. The R.S.D. was 5–9% over this concentration range. For human serum containing 25 ng/ml of epirubicin, the inter- and intra-day variation was <10%. Recoveries of the metabolites epirubicinol, 7-deoxydoxorubicinone and 7-deoxydoxorubicinolone at 20 ng/ml ranged from 94–104%. The assay has been used to study human plasma samples taken during a 96-h infusion of epirubicin in a patient with multiple myeloma. The combined levels of the unseparated metabolites, epirubicin glucuronide and epirubicinol glucuronide, were semiquantitatively determined after treatment with β-glucuronidase. The metabolites epirubicinol and 7-deoxydoxorubicinolone, but not 7-deoxydoxorubicinone, were also detected and measured.  相似文献   

5.
CPT-11 {I; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin} is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml–10 μg/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5–1000 ng/ml) was 13.0% (range 4.9–19.4%) for I and 12.8% (6.7–19.1%) for II; the between-day R.S.D. (5–10 000 ng/ml was 7.9% (5.4–17.5%) for I and 9.7% (3.5–15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 ± 285 ng/ml (mean ± standard error of the mean). Plasma decay was triphasic with half-lives α, β and γ of 5.4 ± 1.8 min, 2.5 ± 0.5 h and 20.2 ± 4.6 h, respectively. The volume of distribution at steady state was 105 ± 15 l/m2, and the total body clearance was 12.5 ± 1.9 l/h · m2. The maximum concentrations of the active metabolite II reached 36 ± 11 ng/ml.  相似文献   

6.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

7.
A rapid, selective and sensitive HPLC–tandem mass spectrometry method was developed and validated for simultaneous determination of flupirtine and its active metabolite D-13223 in human plasma. The analytes and internal standard diphenhydramine were extracted from plasma samples by liquid–liquid extraction, and chromatographed on a C18 column. The mobile phase consisted of acetonitrile–water–formic acid (60:40:1, v/v/v), at a flow rate of 0.5 ml/min. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method has a limit of quantitation of 10 ng/ml for flupirtine and 2 ng/ml for D-13223, using 0.5-ml plasma sample. The linear calibration curves were obtained in the concentration range of 10.0–1500.0 ng/ml for flupirtine and 2.0–300.0 ng/ml for D-13223. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples was less than 7.2% for flupirtine and D-13223. The accuracy as determined from QC samples was less than 5% for the analytes. The overall extraction recoveries of flupirtine and D-13223 were determined to be about 66% and 78% on average, respectively. The method was applied for the evaluation of the pharmacokinetics of flupirtine and active metabolite D-13223 in volunteers following peroral administration.  相似文献   

8.
This paper describes the development of a simple and sensitive analytical method for the quantification of melatonin in human plasma and rabbit serum, using standard analytical equipment and on-line column enrichment without prior extraction, clean-up or derivatization. The analytical procedure was found to be accurate, precise and linear. For human plasma, the accuracy was 101% (range 89–106%), and the mean precision was 5% (range 2–9%) for all concentrations (0, 2, 10, 50 and 200 ng/ml) tested (n=6). The accuracy in rabbit serum was 101% (range 90–112%), and the mean precision was 13% (range 8–19%) for all concentrations (0, 2, 10, 50, 200 and 500 ng/ml) tested (n=6). The retention time of melatonin was about 8 min and the total recoveries were found to be approximately 65 and 85%, respectively, for human plasma and rabbit serum. The limit of detection was found to be lower than 1 ng/ml for human plasma and around 2 ng/ml for rabbit serum. The method is, therefore, found to be suitable for melatonin bioavailability studies in rabbits and presumably also in humans.  相似文献   

9.
Solid-phase microextraction (SPME) was investigated as a sample preparation method for assaying the neuroleptic drug clozapine in human plasma. A mixture of human plasma, water, loxapine (as internal standard) and aqueous NaOH was extracted with a 100-μm polydimethylsiloxane (PDMS) fiber (Supelco). Desorption of the fiber was performed in the injection port of a gas chromatograph at 260°C (HP 5890; 30 m×0.53 mm I.D., 1 μm film capillary; nitrogen–phosphorous selective detection). Fibers were used repeatedly in up to about 75 analyses. The recovery was found to be 3% for clozapine from plasma after 30 min of extraction. However, in spite of the low recovery, the analyte was well separated and the calibration was linear between 100 and 1000 ng/ml. The within-day and between-day precision was consistently about 8 to 15% at concentrations of 200 ng/ml to 1000 ng/ml. No interfering drug was found. The limit of detection was 30 ng/ml. The sample volume was 250 μl. The influence of the concentration of proteins, triglycerides and salt, i.e., changes in the matrix on the peak areas and peak-area ratios was studied. The method is not impaired by physiological changes in the composition of the matrix. Good agreement was found with a liquid–liquid extraction–gas–liquid chromatography (LLE–GLC) standard method and an on-line column-switching high-performance liquid chromatography (HPLC) method for patients’ samples and spiked samples, respectively. It is concluded that the method can be used in the therapeutic drug monitoring of clozapine because the therapeutic window of clozapine is from 350 to 600 ng/ml.  相似文献   

10.
A HPLC method has been developed for the analogue of Ecstasy MDE and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA) in human plasma. In the course of our investigations we found that the methylenedioxyamphetamines and HME exhibit fluorescence at 322 nm. Therefore the detection could be carried out with a fluorescence (FL) detector. Solid-phase extraction was used for sample preparation and yielded high recovery rates greater than 95%. The limit of quantitation for MDE and its metabolites in the extracts was between 1.5 and 8.9 ng/ml and the method standard deviations were less than 5%. This sensitive, rapid and reliable analytical method has been used successfully in the quantitation of the substances in plasma samples obtained from 14 volunteers in two clinical studies after p.o. administration of 100 to 140 mg MDE*HCl. The maximum plasma concentrations were 235–465 ng/ml (MDE), 67–673 ng/ml (HME) and 7–33 ng/ml (MDA), respectively. Pharmacokinetic parameters have been investigated using the plasma concentration curves.  相似文献   

11.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

12.
The first method using high-performance liquid chromatography (HPLC) has been developed for the determination of trans-resveratrol in human plasma. The method involves a liquid–liquid extraction followed by reversed-phase HPLC with UV detection. The detection limit of trans-resveratrol in human plasma was 5.0 ng/ml. Standard curves are linear over the concentration range of 5.0–5000.0 ng/ml. Intra-assay variability ranged from 1.9 to 3.7% and inter-assay variability ranged from 2.5 to 4.0% at the concentration range of 15.0–4000.0 ng/ml.  相似文献   

13.
An analytical method for the determination of lycopene in tissues and plasma of rats is described. The method was validated for the determination of lycopene in liver and plasma with respect to selectivity, linearity, accuracy, recovery and precision. Following precipitation of proteins with water–ethanol plasma was extracted with hexane; tissues were extracted with acetone followed by precipitation of proteins with water–ethanol and extraction of lycopene with hexane. Separation and quantification of geometrical isomers of lycopene was achieved by normal-phase HPLC with UV/VIS detection at 471 nm. The method proved to be selective and specific for lycopene in plasma and liver. Detector response was linear in the range from 2 ng/g to 10 μg/g liver and 0.5 ng/ml to 2 μg/ml plasma, respectively. Average recoveries ranged from 96 to 101% in spiked liver samples and from 91 to 94% in spiked plasma samples. Intra-day variability (C.V.) was ≤6% and ≤5% in liver and plasma, respectively. Inter-day precision was ≤9% for liver samples and ≤6% for plasma samples. The procedures were successfully applied to the sample analysis of pharmacokinetic and metabolism studies.  相似文献   

14.
Zofenopril is a pro-drug designed to undergo metabolic hydrolysis yielding the active free sulfhydryl compound zofenoprilat, which is an angiotensin converting enzyme (ACE) inhibitor, endowed also with a marked cardioprotective activity. A simple, highly sensitive specific LC–MS–MS method was developed for the determination of zofenopril and zofenoprilat in human plasma. In order to prevent oxidative degradation of zofenoprilat and its internal standard, their free sulfhydryl groups were protected by treatment with N-ethylmaleimide (NEM), which produced the succinimide derivatives. The compounds and their corresponding fluorine derivatives, used as internal standards, were extracted from plasma with toluene. The reconstituted dried extracts were chromatographed and then monitored by a triple-stage-quadrupole instrument operating in the negative ion spray ionization mode. The method was validated over the concentration range of 1–300 ng/ml for zofenopril and 2–600 ng/ml for zofenoprilat. Inter- and intra-assay precision and accuracy of both zofenopril and zofenoprilat were better than 10%. The limit of quantitation was 1 ng/ml with zofenopril and 2 ng/ml with zofenoprilat. Extraction recovery proved to be on average 84.8% with zofenopril and 70.1% with zofenoprilat. Similar recoveries were shown by the above two internal standards. The method was applied to measure plasma concentrations of zofenopril and zofenoprilat in 18 healthy volunteers treated orally with zofenopril calcium salt at the dose of 60 mg.  相似文献   

15.
A gas chromatographic procedure is reported for the determination of caffeine in plasma, saliva, and xanthine beverages. Using a 75 cm column packed with OV-17, nitrogen-sensitive detection, and 1 ml samples, a suitable limit of analysis (coefficient of variation (CV)=10.2%) of 50 ng/ml was obtained in plasma. Within-day CVs at caffeine concentrations of 0.1–0.5–2.0–7.5–15.0 g/ml in plasma were 7.7–5.6–4.8–3.8–3.4%, respectively. The limit of detection, defined as the injected quantity of caffeine giving rise to a signal to noise ratio of 2, is 40 pg, corresponding to a plasma concentration of 1 ng/ml.The procedure involves addition of the internal standard 7-pentyl theophylline and alkaline extraction of the sample with dichloromethane. The method described rivals any gaschromatographic assay published so far in rapidness and accuracy.Plasma and saliva caffeine concentrations were determined in a healthy male volunteer after swallowing 400 ml of coffee. The calculated pharmacokinetic parameters, assuming complete absorption of caffeine from the G.I. tract, agree well with previously published values.  相似文献   

16.
A liquid chromatography method with multi-channel electrochemical detection was developed for the determination of epigallocatechin gallate (EGCG) in rat plasma. After administration of EGCG, blood samples were periodically collected by Culex (an automated blood sampling robot). EGCG was extracted from 50 μl of diluted blood (blood and saline at a ratio of 1:1) with ethyl acetate. Chromatographic separation was achieved within 10 min using a C8 (150×4.6 mm) 5 μm column with a mobile phase containing 20 mM sodium monochloroacetate, pH 2.8 and 12% acetonitrile at a flow-rate of 1.2 ml/min. A four-channel detector with glassy carbon electrodes was used with applied potentials of +700, 600, 500, 400 mV vs. Ag/AgCl. The limit of detection was 2 ng/ml at a signal-to-noise ratio of 3:1 and the limit of quantitation was 5 ng/ml. The calibration curve was linear over the range of 5–800 ng/ml. The intra- and inter-assay precisions were in the range of 1.3–4.5% and 2.2–4.4%, respectively. Using this method it was possible to determine plasma concentration following a single dose of EGCG to rats with good accuracy and precision. Thus the pharmacokinetic properties of EGCG in rats can be examined for intravenous, intraperitoneal and oral dosing.  相似文献   

17.
A sensitive, selective, and reproducible GC–MS–SIM method was developed for determination of artemether (ARM) and dihydroartemisinin (DHA) in plasma using artemisinin (ART) as internal standard. Solid phase extraction was performed using C18 Bond Elut cartridges. The analysis was carried out using a HP-5MS 5% phenylmethylsiloxane capillary column. The recoveries of ARM, DHA and ART were 94.9±1.6%, 92.2±4.1% and 81.3±1.2%, respectively. The limit of quantification in plasma was 5 ng/ml (C.V.≤17.4% for ARM and 15.2% for DHA). Calibration curves were linear with R2≥0.988. Within day coefficients of variation were 3–10.4% for ARM and 7.7–14.5% for DHA. Between day coefficients of variations were 6.5–15.4% and 7.6–14.1% for ARM and DHA. The method is currently being used for pharmacokinetic studies. Preliminary data on pharmacokinetics showed Cmax of 245.2 and 35.6 ng/ml reached at 2 and 3 h and AUC0–8h of 2463.6 and 111.8 ngh/ml for ARM and DHA, respectively.  相似文献   

18.
An improved HPLC method using a silica gel column with fluorescence detection (excitation at 300 nm and emission at 365 nm) was developed for the determination of sulpiride concentrations in plasma. Analysis of sulpiride in plasma samples was simplified by a one-step liquid–liquid extraction after alkaline treatment of only 1 ml of plasma. The low limit of quantitation was 20 ng/ml with a coefficient of variation of less than 20%. A linear range was found from 20 to 1500 ng/ml. This HPLC method was validated with the precision for inter-day and intra-day runs being 0.36–8.01% and 0.29–5.25%, respectively, and the accuracy (standard deviation of mean, SD) for inter-day and intra-day runs being −1.58 to 5.02% and −2.14 to 5.21%, respectively. Bioequivalence of the two products was evaluated in 12 normal healthy male volunteers in a single-dose, two-period, two-sequence, two-treatment cross-over study. Sulpiride plasma concentrations were analyzed with this validated HPLC method. Results demonstrated that the two tablet formulations of sulpiride appear to be bioequivalent.  相似文献   

19.
A highly sensitive and selective liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry assay was developed and validated for simultaneous determination of epimeric budesonide (BUD) and fluticasone propionate (FP) in plasma. The drugs were isolated from human plasma using C18 solid-phase extraction cartridges, and epimeric BUD was acetylated with a mixture of 12.5% acetic anhydride and 12.5% triethylamine in acetonitrile to form the 21-acetyl derivatives following the solid-phase extraction. Deuterium-labelled BUD acetate with an isotopic purity >99% was synthesized and used as the internal standard. The assay was linear over the ranges 0.05–10.0 ng/ml for epimeric BUD, and 0.02–4.0 ng/ml for FP. The inter- and intra-day relative standard deviations were <14.3% in the assay concentration range.  相似文献   

20.
Morphine (MOR) is an opioid analgesic used for the treatment of moderate to severe pain. MOR is extensively metabolized to morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). A rapid and sensitive method that was able to reliably detect at least 0.5 ng/ml of MOR and 1.0 ng/ml of M6G was required to define their pharmacokinetic profiles. An LC–MS–MS method was developed in our laboratory to quantify all three analytes with the required sensitivity and a rapid turnaround time. A solid-phase extraction (SPE) was used to isolate MOR, M3G, M6G, and their corresponding deuterated internal standards from heparinized plasma. The extract was injected on a LC tandem mass spectrometer with a turbo ion-spray interface. Baseline chromatographic separation among MOR, M3G, and M6G peaks was achieved on a silica column with an aqueous organic mobile phase consisting of formic acid, water, and acetonitrile. The total chromatographic run time was 3 min per injection, with retention times of 1.5, 1.9 and 2.4 min for MOR, M6G, and M3G, respectively. Chromatographic separation of M3G and M6G from MOR was paramount in establishing the LC–MS–MS method selectivity because of fragmentation of M3G and M6G to MOR at the LC–MS interface. The standard curve range in plasma was 0.5–50 ng/ml for MOR, 1.0–100 ng/ml for M6G, and 10–1000 ng/ml for M3G. The inter-day precision and accuracy of the quality control (QC) samples were <7% relative standard deviation (RSD) and <6% relative error (R.E.) for MOR, <9% RSD and <5% R.E. for M6G, and <3% RSD and <6% R.E. for M3G. Analyte stability during sample processing and storage were established. Method ruggedness was demonstrated by the reproducible performance from multiple analysts using several LC–MS–MS systems to analyze over one thousand samples from clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号