首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
双分体式钢箱梁具有良好的颤振性能,但在常遇风速内易发生涡激振动。为研究双分体式钢箱梁的涡激振动性能及其抑振措施,以某跨径为658 m的双分体式钢箱梁斜拉桥为背景,通过节段模型风洞试验,开展检修轨道与中央格栅等一系列独立气动措施以及多种联合气动措施对主梁涡振性能的优化研究。试验结果表明:1)在常遇风速下,原始断面在5个来流攻角(α=0°,±3°,±5°)中均观测到大幅竖向涡激振动,需采取抑振措施来抑制主梁涡激振动,结构阻尼提升至1.48%时涡振振幅仍未满足限值要求,完全消除主梁涡激振动需将阻尼比提升至2.3%;2)优化检修轨道位置能有限减小主梁竖向涡激振动,减少幅度在12.8%~29.6%之间;3)在分体式双箱梁中央开槽处添加中央格栅能大幅减小主梁竖向涡振振幅,相较原始断面减少了60%以上;4)检修轨道与中央格栅联合减振效果不如独立添加中央格栅气动措施,但这2种气动措施联合稳定板能有效控制主梁涡激振动,且相较原始断面,主梁涡振振幅下降了78%以上,在此基础上对中央开槽的封堵率以及检修轨道与外侧斜腹板之间的间距进行优化,最终得到一种双分体式钢箱梁断面涡激振动抑振措施,使主梁竖向涡振振幅减少...  相似文献   

2.
为掌握大跨人行悬索桥纵横主梁涡振性能,以国内拟建的一座宽跨比为0.028 4的人行悬索桥为工程背景,对其涡振响应特性及发生机理进行了研究。采用数值方法分析了该主梁涡振响应、流场涡脱演化、风压分布以及涡激振动贡献系数在-3°、0°和3°风攻角下的特性。结果表明,随着风攻角由正转负,主梁竖弯涡振性能变差,其风速锁定区间向低风速区偏移,最大竖弯涡振幅值增大,最不利扭转涡振出现在0°风攻角下。由于主梁下表面多个工字钢纵梁的阻挡作用,导致主梁下部气流旋涡运动状态复杂,其对涡振响应影响显著。脉动风压系数随风攻角的变化规律复杂,主梁上、下表面脉动风压系数极值分别出现在-3°和3°风攻角下。不同风攻角下,主梁上、下表面的涡激振动正贡献系数极值均出现在尾流端且作用范围较大,此为结构竖弯涡振响应的主要贡献区域。  相似文献   

3.
涡激振动是大跨度桥梁主梁在低风速下容易发生的一种风致振动现象,会影响行车安全性、舒适性和桥梁疲劳寿命,避免涡激振动的发生或抑制涡激振动振幅是桥梁抗风设计的热点问题。基于涡激振动对主梁气动外形敏感的特性,通过设计不同气动措施改善主梁的涡激振动性能,探究单个气动措施和多个气动措施组合的涡激振动抑制效果。以某π型开口截面斜拉桥工程为依托,对几何缩尺比为1∶37的刚性节段模型开展涡激振动研究,进行了风洞测振试验,并对下稳定板、检修车轨道位置和导流板等典型气动措施的抑振效果进行了测试。研究结果表明:主梁原设计断面存在明显的竖弯涡激振动现象,最大竖弯涡激振动振幅已超过规范限值;安装1道下稳定板可有效抑制竖弯涡激振动,安装多道下稳定板后,竖弯涡激振动振幅被限制,但同时会造成扭转涡激振动振幅增大,使用稳定板措施时应兼顾竖弯涡激振动和扭转涡激振动振幅的变化;检修车轨道的有无及位置变化对此截面的涡激振动性能影响较小,内移检修车轨道不能有效减小涡激振动振幅;在安装1道下稳定板的基础上增设导流板可进一步抑制涡激振动,安装下稳定板与导流板的组合措施可达到最优抑振效果。研究结果可为类似主梁断面涡激振动的气动控制措...  相似文献   

4.
为研究跨铁路站场的带高防护结构边箱叠合梁斜拉桥的涡振性能及抑振措施,开展1:50节段模型涡激振动风洞试验研究。试验分析风攻角(+3°,0°和-3°)以及防护结构对主梁涡振性能的影响。在此基础上,综合测试水平稳定板、梁底稳定板、风嘴、改变防护结构透风率等气动措施对桥梁涡振性能的提升效果。试验结果表明:带高防护结构的边箱叠合梁涡振性能较差,3个风攻角工况均出现了大幅竖向涡激振动;防护结构以及断面本身较钝的外形造成了主梁的气动不稳定,考虑到其本身较明显的钝体效应,建议在断面两侧安装风嘴;采用风嘴+两道梁底稳定板的方式能显著提高主梁涡振性能;在安装风嘴的基础上,增大防护结构下部实心段的透风率能够较好的控制主梁涡激振动。  相似文献   

5.
黄林  董佳慧  王骑  廖海黎 《铁道学报》2023,(10):144-155
钝体钢箱梁在大跨度铁路桥梁建设中具有广阔的应用前景,以某大跨度钝体钢箱梁铁路斜拉桥为背景,采用1∶50节段模型风洞试验对该类箱梁的涡振响应进行测试,试验结果表明梁体在各测试风攻角(0°、±3°、±5°)下均存在涡激振动。为抑制涡激振动,通过风洞试验并结合计算流体动力学研究风嘴外形对钝体钢箱梁涡振性能的影响规律。研究表明,采用下行风嘴形式与减小风嘴角度均能提高三角形风嘴的制振能力。在传统三角形风嘴上部设置平台可显著提高风嘴制振性能,增加平台长度与减小风嘴角度均可有效提高该类风嘴的制振效果,但其中平台长度是主导影响因素。进而提出一种带平台的三角形下行风嘴制振措施,并通过1∶25节段模型风洞试验对该措施有效性进行验证。数值模拟结果表明,改变风嘴外形可有效降低主梁表面的旋涡尺寸,从而起到抑振主梁涡振的作用。研究成果可为大跨度钝体钢箱梁铁路桥的涡振制振设计提供参考。  相似文献   

6.
以沪昆高速铁路长沙段三跨(112+80+32)m独塔斜拉桥为研究对象,利用自主研发的车桥耦合振动分析软件TRBF-DYNA开展斜拉桥维修卸索施工期间的桥梁动力响应及列车走行性分析。采用多刚体动力学方法建立31个自由度的车辆模型,采用有限元方法建立轨道—斜拉桥模型,轮轨间竖向采用Hertz非线性接触模拟,横向采用蠕滑理论模拟。分析结果表明:卸索对桥梁刚度的影响不大,对桥梁自振频率的影响在5%以内;卸索期间车致桥梁振动响应略有增加,其中桥面主跨竖向振动位移最大增加了10.8%,但其他参数增幅较小;桥塔以纵向振动为主,不同卸索工况对桥塔纵向振动影响显著;各卸索工况主要影响车辆竖向加速度,对列车其他运行安全性指标影响较小;在卸索期间,列车的行车安全性和平稳性指标均满足规范要求。  相似文献   

7.
以广东沿海强风区某在建中承式三主桁式大跨度钢拱桥为工程背景,通过风洞试验和理论分析,研究该桥梁施工状态和成桥状态风致响应特性。采用节段模型试验获得主梁、拱肋和拱脚的气动三分力以及主梁涡激振动特征,利用全桥气弹模型试验研究风致响应特征并与理论分析进行对比。研究结果表明:三主桁拱肋气动阻力大但是升力及扭矩小,不易发生静风失稳,拱脚气动力随风偏角变化显著;该桥主梁存在发生涡激共振的可能性,但振幅小于规范限值,且阻尼比达到1.0%时基本有效抑制了涡振;拱肋横风向抖振响应大,主梁竖向抖振响应大,施工状态拱肋最大位移达1.47 m,应合理选择施工期,避开台风期。  相似文献   

8.
马涛 《铁道建筑技术》2023,(4):148-150+185
重载列车作用会导致铁路隧道基底结构动力响应不断增大,从而使基底结构产生破坏。采用数值模拟方法,建立单、双线隧道-围岩耦合计算模型,对重载列车作用下单、双线隧道动力响应随深度变化规律进行研究,对列车轴重、行车速度和填充层厚度对隧底结构动力响应特性的影响规律进行计算分析。结果表明:隧道横断面上的拉应力沿深度方向先增大后减小,在初支部位达到峰值,单线隧道轨下断面为最不利断面,双线隧道中线断面为最不利断面;随轴重增加,隧底仰拱各特征点竖向位移及填充层最大主应力响应均呈现线性变化趋势;随列车速度增加,各特征点竖向位移略有增大,但幅值变化不大;随填充层厚度增加,隧道仰拱最大加速度及最大主应力均呈减小趋势。  相似文献   

9.
高速铁路客运站房大型幕墙是一种桥建合一的结构体系,由于玻璃幕墙体系与列车轨道梁紧密相联,高速列车通过时可能引起玻璃幕墙共振的问题。因此,在设计幕墙结构体系时,行车振动对玻璃幕墙结构体系的影响必须予以考虑。以某高速铁路站房玻璃幕墙结构为研究对象,运用有限元方法进行数值动力仿真分析,分析结果表明:行车振动荷载不会使幕墙结构产生共振;双边列车通行相比单边列车通行,幕墙结构产生的平面外振动位移要大;当行车振动荷载激振方式为竖向力激振时,竖向激振荷载作用下幕墙结构的平面外振动位移很小。  相似文献   

10.
研究目的:高速列车运行对无砟轨道的平顺性要求非常严格,而大跨度桥梁在温度荷载作用下引起的主梁竖向变形是引起轨道平顺性发生变化的主要原因。本文以商合杭铁路沙颍河大跨度矮塔斜拉桥为背景,对不同的桥梁结构体系、边跨比、主梁类型、梁高、斜拉索规格及布置、桥塔高度等进行对比分析,研究其对温度变形的影响,从而确定矮塔斜拉桥的无砟轨道适应性。研究结论:(1)矮塔斜拉桥可以满足无砟轨道的平顺性要求,保证高速铁路的行车安全性及舒适性;(2)有效释放梁体收缩徐变及温度变形的桥梁结构体系更加容易满足轨道平顺性要求,应优先选用;(3)斜拉索的温度变化及索梁温差是引起主梁竖向变形的主要因素,确定合适的斜拉索规格、安全系数、索间距,既能充分发挥斜拉索对主梁的贡献,又能减小温度荷载作用下主梁的竖向变形;(4)为减小斜拉索对温度变形的影响,主梁宜采用混凝土结构;(5)本研究成果对今后高速铁路矮塔斜拉桥设计具有一定的指导意义。  相似文献   

11.
在均匀流场中进行了分离双扁平箱梁涡激振动节段模型风洞试验,研究了-5°~+5°间8个不同风攻角下分离双箱梁在D/B=0.1(D为双箱梁的净间距,B为单箱梁的宽度)时的涡振特性,并将结果与单箱梁的结果进行了对比。结果显示:+5°风攻角下,上下游箱梁的涡激振动受到了抑制,表现为振幅的减小和风速锁定区间的缩短;随着风攻角的逐渐变小,这种抑制效应逐渐变弱,并转变为放大效应;+2°风攻角下,单箱梁未发生涡激振动现象,但上下游箱梁均发生了比较明显的涡激振动。  相似文献   

12.
为研究扁平板式吊杆风致涡激振动特性,采用CFD(Computational Fluid Dynamics)方法建立涡振数值模型,并验证该方法和模型的可靠性。以高宽比1∶6的吊杆为研究对象,分析不同风向下吊杆风致涡振随风速的变化规律,研究涡振过程中旋涡的脱落规律,并提出增设扰流板和竖向开槽2种气动优化措施。结果表明:吊杆长边迎风涡振振幅最大值为35.2 mm。气流在吊杆的上下侧出现明显的来流分离和旋涡脱落,并在吊杆后方产生巨大空腔。设置三角扰流板的吊杆后涡振锁定区间大幅减小,各风速下涡振振幅均大幅降低,最大涡振振幅减小89.5%。开槽后的吊杆断面在各风速下振幅接近0,吊杆开槽能够有效抑制涡振的发生。  相似文献   

13.
为分析桥上有砟轨道结构在重载列车作用下的竖向动力响应,基于ANSYS建立有砟轨道—桥梁系统动力分析有限元模型,将列车荷载简化为集中力,分析研究中—活载及和谐号双机重载列车移动活载作用下桥梁和轨道结构的竖向位移和加速度动力响应。研究结果表明:轨道和桥梁结构跨中竖向位移和加速度响应在HXD1+HXD3+C80作用下最大,最大值为12.60 mm和3.27 mm/s~2,挠跨比为3.94×10~(-4),均小于规范中40 mm,350 mm/s~2和2.5×10~(-3)的要求;行车速度对轨道桥梁结构竖向位移响应影响很小,竖向加速度随着行车速度的增大而增大;增大桥梁刚度可以降低轨道桥梁结构系统的竖向位移和加速度响应,提高行车稳定性和乘客的舒适度;对既有铁路有砟轨道桥梁,应限定行车速度,采取相应的加固措施提高刚度以保证车—轨—桥系统的安全。  相似文献   

14.
以某高速铁路客运专线上铺设CRTSⅠ型双块式无砟轨道的大跨度斜拉桥为例,采用非线性阻力模型模拟扣件阻力、凸型挡台咬合力、隔离层摩擦阻力,基于有限元法建立无砟轨道—桥梁空间精细化非线性分析模型。通过计算列车竖向荷载和温度荷载作用下轨道结构和桥面板的竖向变形曲率、无砟轨道层间压缩量和梁端转角,分析无砟轨道与大跨度斜拉桥间的变形适应性。结果表明:列车竖向荷载在斜拉桥中跨时会引起各构件产生较大的竖向变形曲率;同一工况下轨道结构和桥面板竖向变形曲率的分布规律相同、数值大小相近;相比于列车竖向荷载,温度荷载作用下各结构竖向变形曲率较小,但分布更为复杂;除整体升温、整体降温作用下结合段无砟轨道出现局部层间脱空外,荷载作用下无砟轨道层间基本处于受压状态;梁端转角均未超过规范限值,具有较高安全富余度。  相似文献   

15.
"抱轨"行驶是跨座式单轨交通的一个显著特点.针对单轨列车与双层桥面钢桁梁斜拉桥的车桥耦合动力性能,以主跨468 m牛田洋大桥为工程背景,基于ANSYS及SIMPACK等软件建立车桥空间耦合动力模型开展联合仿真,研究不同行车速度、不同列车特性下的车、桥动力响应,并对行车安全性等进行了评估.研究结果表明:列车在通过桥梁时的竖向动力效应较弱,位移冲击系数约在1.1以内,且桥梁竖、横向位移响应均与车速无显著联系;竖向位移随过桥车辆数目的增加而增大,横向位移在单线行车时明显大于双线对开工况;桥梁与车体振动加速度均随车速递增,且车体横向振动程度大于竖向;跨座式单轨列车在列车正常行驶速度100 km/h以内通过该大跨度斜拉桥时,桥梁的动力性能优良,桥上列车具备良好的乘坐舒适性.  相似文献   

16.
轨道不平顺不仅是引起列车和轨道振动的主要激扰,也是影响列车安全平稳运行的重要因素。为分析中国高速铁路轨道不平顺谱的特性及其对列车运行的影响,采用移动单元法建立考虑离散支撑的无砟轨道-车辆耦合模型,将逆傅里叶变换得到的中国轨道不平顺谱时域样本作为轮轨激励输入,通过编程数值计算分别研究列车速度、不平顺幅值和波长对轨道-列车系统动力响应的影响。研究表明:基于移动单元法建立的无砟轨道-车辆耦合模型的计算结果与有限元模拟结果吻合良好,移动单元模型准确可靠;轨道高低不平顺的幅值和波长特性均对系统的竖向动力响应有着显著影响,随着幅值增大和较短波长成分增加,轨道位移和轮轨接触力明显增大,其中2 m左右的不平顺波会对轮轨动力特性产生显著影响;此外,较高的车速会加剧系统的竖向动力响应。  相似文献   

17.
位于强台风区域的桥梁抗风分析是结构安全保障的一个重要步骤,而桥梁主梁外形会对其气动力和颤振稳定性产生较大影响。新津河五塔斜拉桥位于中国南部沿海地区-汕北,其主梁断面是在典型斜腹板箱梁(简称“T”形箱梁)的下腹两侧分别增加了悬挑板(简称“I”形箱梁)以作为人行和非机动车道,目前对此类主梁的气动性能研究较少。因此,基于CFD进行“T”形和“I”形2种悬挑翼板箱梁的数值模拟计算,比较分析2种形状箱梁在不同攻角下的三分力系数、压力分布特性和升力系数功率谱,为抖振分析和涡振评价提供支撑。同时,基于Scanlan颤振自激力模型,运用fluent动网格技术和强迫振动法,并通过最小二乘法识别2种主梁断面的8个颤振导数,然后基于Scanlan二维颤振理论获得了2种主梁截面的颤振临界风速。结果表明:“I”和“T”截面的阻力系数随攻角变化较小,整体上后者略大于前者。“T”截面升力系数和扭矩系数均小于“I”截面,且“T”截面升力系数1阶导数小于“I”截面,而扭矩系数斜率差别不大;小风攻角下,“I”形和“T”形箱梁的St分别为0.2和0.12,可见“I”形箱梁发生涡振的风速低于“T”形箱梁;“I”形箱梁比“T”...  相似文献   

18.
广湛铁路东平水道主桥采用(67.5+60+60+350+60+60+67.5) m双塔双索面混合组合梁斜拉桥,半漂浮结构体系。主梁采用混合主梁;桥塔采用带弧A形桥塔,塔高分别为149,147 m;全桥共布置144根斜拉索,斜拉索采用锌铝合金涂层平行钢丝拉索。东平水道主桥受力合理,提升了钢-混凝土混合梁斜拉桥在高铁无砟轨道桥梁中的适用跨度。边跨采用混凝土梁提高结构刚度改善梁端转角;中跨采用开口钢箱梁及预制桥面板的结合梁,节省用钢量,且结构刚度较大。对该桥抗风、风-车-桥系统空间耦合振动、无砟轨道适应性、抗震性能进行研究,结果表明,各项性能均满足规范要求,能够满足高速铁路无砟轨道对结构安全性和行车舒适性的要求。提出复杂建设条件下高速铁路无砟轨道混合结合梁斜拉桥的施工工法,能有效提高施工质量、缩短建设工期。  相似文献   

19.
鳊鱼洲长江大桥为铁路斜拉桥,其矩形钢箱梁主梁在常遇风速下会发生涡激振动.为了抑制其主梁涡激振动,通过一系列风洞试验,研究减小栏杆透风率、增设裙板、导流板及风嘴等气动措施对矩形钢箱梁主梁涡振性能的影响.试验结果表明:减小栏杆透风率、增设裙板、导流板不能有效提高矩形钢箱梁的涡振性能;三角形风嘴能够适当降低主梁的竖弯涡振,但对扭转涡振无明显作用.提出了一种带平台的三角形下行风嘴,可完全消除矩形钢箱梁的涡振现象,并通过1:25大尺度节段模型风洞试验验证了该措施的有效性.论文研究成果可为大跨度铁路斜拉桥钢箱梁的涡振制振设计提供参考.  相似文献   

20.
本文首先进行了芜湖公铁两用斜拉桥的模态分析,然后分别就单个机车和列车以不同的速度沿单向和双向对开通过桥梁时,详细研究了芜湖公铁两用斜拉桥的动力行为。计算结果表明,(1)由于斜拉桥的竖向第一自振周期比较长,因而在本文所研究的行车速度范围内,无论是单向还是双向行进的机车或列车所引发的桥梁竖向振动远离共振区间,因此桥梁的最大位移没有显著差异;(2)双向过桥的机车或列车比单方向过桥的机车或列车引发的桥梁竖  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号