首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
A Water Budget Model for the Yun-Lin Plain,Taiwan   总被引:2,自引:0,他引:2  
A water budget model is proposed to estimate the infiltration, runoff, evapotranspiration and recharge in vadose zone and apply to a case study. The instantaneous redistribution of infiltrated water is assumed to be uniform and a linear relationship between evapotranspiration and effective saturation is imposed. Infiltration is described by Philip's solution in conjunction with the time compression approximation method during rainfall. Runoff occurred when rainfall rate exceeds soil-infiltrating rate. The soil profile drainage was determined by evapotranspiration and recharge. Cumulative infiltration, runoff, evapotranspiration and recharge are estimated with different climate conditions and different soil hydraulic properties during simulating period. Analysis shows that initial effective saturation affects the estimated results in this water budget model in the short or mid-term simulations while not in long-term simulations. The climatic conditions of Yun-Lin plain area, Taiwan from 1991 to 1997 are used by referring to hydrological and hydrogeological parameters to provide the computational procedures of this study for estimating recharge. Results showed that the amount of annual recharge was affected by the amount of annual rainfall and soil properties.  相似文献   

2.
Detailed analyses of hydrological and water quality variables are very important to study the dynamic processes in a river basin. In this study, we have further modified the Enhanced Soil and Water Assessment Tool (ESWAT) model by incorporating hourly evapotranspiration and overland flow routing modules. Results from comparison of the performances by two ESWAT versions indicate that the modified version performed better than the original model. The modified ESWAT model has reasonably reproduced observed time series runoff and most commonly collected water quality data. In addition, input data availability at required spatial and temporal resolutions is the major bottleneck in implementing many detailed hydrological models. In this paper, we have also developed a robust methodology to successfully disaggregate daily rainfall data into hourly datasets. Furthermore, we have assessed the implications of such daily rainfall disaggregation schemes on subsequent simulation of hydrological and water quality variables at river basin level. The outcomes suggest that the multivariate rainfall disaggregation scheme better reproduced observed rainfall and runoff data.  相似文献   

3.
Rainfall-runoff processes in a small oil palm catchment (8.2 ha) in Johor, Malaysia were examined. Storm hydrographs show rapid responses to rainfall with a short time to peak. The estimated initial hydrologic loss for the oil palm catchment is 5 mm. Despite the low initial loss, the catchment exhibits a high proportion of baseflow, approximately 54% of the total runoff. On an event basis, the stormflow response factor and runoff coefficient ranges from 0.003 to 0.21, and 0.02 to 0.44, respectively. Peakflow and stormflow volume were moderately correlated with rainfall. The hydrographs were satisfactorily modelled using the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). The efficiency indexes of the calibration and validation exercises are 0.81 and 0.82, respectively. Based on these preliminary findings, it could be suggested that an oil palm plantation would be able to serve reasonably well in regulating basic hydrological functions.  相似文献   

4.
三峡水库蓄水对其库区降雨量-径流量关系变化的影响程度对于库区水资源规划有着重要意义。选用万县水文站1977-2017共计41 a的降雨量和径流量实测值,确定了各蓄水阶段降雨量和径流量的分布情况,引入Copula函数模型计算各阶段的联合分布函数,定量分析水库调蓄对两者关系的影响,预测了2017年后水文情势。结果表明:采用Copula函数联合分布数学模型能较好计算三峡库区万州段不同阶段的降雨量-径流量关系。万州段从天然河道变为库区河道后,降雨量-径流量关系发生了较大变化。在天然河道阶段,降雨量和径流量均采用皮尔逊III型分布最为合理;三峡水库工程施工期和初步蓄水阶段,降雨量变为Gumbel分布,径流量变为对数正态分布;试验性蓄水阶段,降雨量变为对数正态分布,径流量恢复至皮尔逊III型分布。年降雨量和年径流量在施工期及初步蓄水阶段较天然河道阶段均有所减少,年降雨量变幅区间减小38.4%,年径流量变幅区间减小20.6%;试验性蓄水阶段的年降雨量增多,变幅区间增大24.5%,而年径流量减少,变幅区间减小57%。通过该数学模型预测三峡库区万州段今后年径流量不小于3 490×108 m3(±5%),最大不超过4 055×108 m3(±5%);年降雨量不小于1 048 mm(±5%),最大值不超过1 842 mm(±5%)。该研究可为三峡库区万州段流域水资源开发利用与水文序列的重构工作等提供科学依据,也可为其他库区内河道的水文特性变化关系的研究提供参考。  相似文献   

5.
In the present study, spatio-temporal variability of hydrological components under climate change is analysed over Wainganga River basin, India. In order to address the climate change projection, hydrological modelling is carried out using a macro scale, semi-distributed three (3)-Layer Variable Infiltration Capacity (VIC-3 L) model. The high-resolution (0.5o?×?0.5o) meteorological variables are divided into multiple periods to calibrate and validate the VIC-3 L model. The future projections (2020–2094) of the water balance components are achieved using the high resolution hydrological variables from the COordinated Regional Downscaling EXperiment (CORDEX) dataset under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The uncertainty associated with the multi-model projections are evaluated using Reliability Ensemble Averaging (REA) and the bias correction is accomplished with non-parametric quantile mapping. A probabilistic based areal drought index is also computed for different scenarios using Standardized Precipitation Evapotranspiration Index (SPEI). From the results, it is observed that amount of rainfall, evapotranspiration, and runoff has increased over the basin with no change in the spatial pattern. However, temporal variability is noticed with an increasing trend for rainfall and runoff in the non-monsoon season than the monsoon. Streamflow is expected to increase significantly, especially for medium to low flows (those occurring between 0.2 and 0.9 probability of exceedance in a Flow Duration Curve). In addition, the area under the drought condition has decreased under the projected climate scenarios.  相似文献   

6.
为分析圩院式防洪模式对流域防洪的影响,以秦淮河流域为研究区,构建HEC-HMS水文模拟模型,分析不透水率、允许水深、排涝模数的变化对流域洪峰和洪量模拟结果的影响。研究结果表明:随着流域不透水率从20%增大至70%时,圩垸式防洪模式下流域洪量和洪峰均呈现增大趋势;当圩垸允许水深增大时,圩垸式防洪模式下流域洪量呈递减趋势,而流域洪峰呈递增趋势;随着排涝模数的降低,流域的洪峰和洪量呈递减趋势。研究成果对秦淮河流域及相似流域的HEC-HMS模型洪水模拟及参数设置具有借鉴和指导意义。  相似文献   

7.
基于SWAT模型的秦淮河流域气候变化水文响应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解气候变化对水文水资源的影响机理,以秦淮河流域为研究区构建SWAT模型,使用SWAT-CUP对模型进行参数敏感性分析、率定及验证,并采用任意假设法设计未来气候情景,分析温度及降雨变化对流域径流及实际蒸散发量的影响。结果表明:模型在月径流模拟中具有较高的精度,适用于秦淮河流域气候变化下的水文响应研究;气温降低或降雨量上升都会引起流域径流量增加,反之则减少;实际蒸散发量与降雨量正相关,而实际蒸散发量对气温变化的响应不明显;平水年径流量对降雨量变化的响应较强,枯水年径流量对温度变化的响应较强;枯水年实际蒸散发量对降雨量变化的响应较强。  相似文献   

8.
In applied hydrology, predicting peak flow for a stream or river is so complex due to temporal and spatial dependency of hydrological variables such as meteorological parameters, variations in soil type and land use. Either advanced distributed hydrological models or simple Lump models can be used for simulating these situations. This paper compares the performance of the quasi-distributed model ModClark versus lumped parameter model Clark in simulating the process of transformation of rainfall to runoff. The aim of this comparison is to identify whether using a complex model which takes into account spatial and temporal distribution parameters, which are hard to prepare and use, will lead to more precise results or not. For the purpose of this study, historical data of Randan basin situated in semi-arid region of Iran in North West of Tehran was used. The size of the catchment is 67.76 km2. Reviewing the results of calibration and accuracy of models revealed that both models are able to simulate the hydrology of the catchment in an acceptable way.  相似文献   

9.
灞河流域气候因子对水沙变化的影响   总被引:1,自引:0,他引:1  
利用灞河流域蓝田气象站和马渡王水文站1960—2012年的气象、水文实测资料,分析灞河流域气候及水沙变化规律,同时运用相关性分析、灰色关联分析、多元线性回归模型等多种方法探讨了该流域水沙变化与气候变化的关系。结果表明:灞河流域降雨量、蒸发量、径流量和输沙量皆呈显著下降趋势,而气温呈上升趋势;降雨量与水沙都有重要的相关关系,1960—1990年影响径流量的气候因子敏感度由大至小依次为降雨量、气温、蒸发量,而1991—2012年则为降雨量、蒸发量、气温,当气温和蒸发量不变时,降雨量每增加1 mm,两阶段的年径流量分别增加0.14亿m3和0.08亿m3;1960—2012年影响输沙量的气候因子敏感度由大至小依次为降雨量、气温、蒸发量,当气温和蒸发量不变时,降雨量每增加1 mm,年输沙量增加0.668万t。  相似文献   

10.
The HEC-HMS and IHACRES rainfall runoff models were applied to simulate a single streamflow event in Wadi Dhuliel arid catchment that occurred on 30–31/01/2008. Streamflow estimation was performed on the basis of an hourly scale. The aim of this study was to develop a new framework of rainfall-runoff model applications in arid catchments by integrating a re-adjusted satellite-derived rainfall dataset (GSMaP_MVK+) to determine the location of the rainfall storm. The HEC-HMS model was applied using the HEC-GeoHMS extension in ArcView 3.3 while the IHACRES is Java-based version model. The HEC-HMS model input data include soil type, land use/land cover, and slope. By contrast, the lumped model IHACRES was also applied, based on hourly rainfall and temperature data. Both models were calibrated and validated using the observed streamflow data set collected at Al-Za’atari discharge station. The performance of IHACRES showed some weaknesses, while the flow comparison between the calibrated streamflow results fits well with the observed streamflow data in HEC-HMS. The Nash-Sutcliffe efficiency (Ef) for the two models was 0.51 and 0.88 respectively.  相似文献   

11.
黑河流域水循环系统的分布式模拟(Ⅰ)——模型开发与验证   总被引:26,自引:6,他引:20  
贾仰文  王浩  严登华 《水利学报》2006,37(5):534-542
从水循环的物理机制着手,在考虑人工侧支循环的基础上,以现代地理信息技术为数据处理平台,开发了黑河流域水循环系统的分布式模拟模型。文中系统描述了模型结构,从水循环过程和能量循环过程2个方面对模型各要素的过程模拟进行了阐述,其中水循环过程包括蒸发蒸腾、入渗与径流、地下水运动、地下水流出和地下水溢出、坡面汇流与河道汇流、人工侧支循环等要素过程。在获取各类输入参数后,采用1km网格、以日为时间步长对黑河流域上、中游地区(36 728个网格单元)进行了1981~2002年的逐日模拟。结果表明,所建立的分布式模型对月径流过程和日平均流量过程具有较高模拟精度。校正期内前后两个验证期均得到良好验证。该模型可用于预测未来环境变化条件下流域水资源演变。  相似文献   

12.
模拟降雨下枯落物调控坡面产流产沙过程及特征研究   总被引:7,自引:0,他引:7  
本研究采用模拟降雨实验的方法,研究了30、60和90 mm/h降雨强度下,5种枯落物覆盖坡面径流的水动力学特征,以期揭示枯落物覆盖条件对坡面产流产沙过程及其径流水动力学特征影响。研究结果表明:坡面平均产流率和产沙率随降雨强度增大而增大,随枯落物生物量增加而减小,并且与降雨强度和枯落物生物量之间均为指数函数关系;坡面流量-历时曲线稳定流量值主要受降雨强度的影响;产沙率-历时曲线稳定产沙率受降雨强度和枯落物生物量等多种因素的影响;枯落物覆盖对坡面径流水动力学特性有显著影响,相比于裸坡覆盖有50、100、150、200 g/m~2枯落物坡面径流平均流速相比裸坡减少率分别在17.7%、26.8%、37.9%、53.7%;雷诺数减少率分别在11.2%、18.7%、26.3%、33.4%左右;弗劳德数减少率在21.3%、30.3%、42.9%、61.2%左右,Darcy-Weisbach阻力系数增大了0.5~5.6倍;产沙率与Darcy-Weisbach阻力系数呈对数关系,与剪切力和径流功率呈线性关系,枯落物能显著增大径流临界剪切力和功率;产沙率(Dr)和各水动力学因子间有良好的相关关系,相关程度顺序为:RewVPFrft。  相似文献   

13.
This study investigates an interdisciplinary scenario analysis to assess the potential impacts of climate, land use/cover and population changes on future water availability and demand in the Srepok River basin, a trans-boundary basin. Based on the output from a high-resolution Regional Climate Model (ECHAM 4, Scenarios A2 and B2) developed by the Southeast Asia—System for Analysis, Research and Training (SEA-START) Regional Center, future rainfall was downscaled to the study area and bias correction was carried out to generate the daily rainfall series. Land use/cover change was quantified using a GIS-based logistic regression approach and future population was projected from the historical data. These changes, individually or in combination, were then input into the calibrated hydrological model (HEC-HMS) to project future hydrological variables. The results reveal that surface runoff will be increased with increased future rainfall. Land use/cover change is found to have the largest impact on increased water demand, and thus reduced future water availability. The combined scenario shows an increasing level of water stress at both the basin and sub-basin levels, especially in the dry season.  相似文献   

14.
Daily water temperature was simulated at a regional scale during the summer period using a simplified model based on the equilibrium temperature concept. The factors considered were heat exchanges at the water/atmosphere interface and groundwater inputs. The selected study area was the Loire River basin (110 000 km2), which displays contrasted meteorological, hydrological and geomorphological features. To capture the intra‐basin variability of relevant physical factors driving the hydrological and thermal response of the system, the modelling approach combined a semi‐distributed hydrological model, simulating the daily discharge at the outlet of 68 subwatersheds (drainage area between 100 and 3700 km2), and a thermal model, simulating the average daily water temperature for each Strahler order in each subwatershed. Simulations at 67 measurement stations revealed a median root mean square error (RMSE) of 1.9°C in summer between 2000 and 2006. Water temperature at stations located more than 100 km from their headwater was adequately simulated (median RMSE < 1.5°C; ?0.5°C < median biases < 0.5°C). However, performance for rivers closer to their source varied because of the averaging of geomorphological and hydrological features across all the tributaries with the same Strahler order in a subwatershed, which tended to mask the specific features of the tributaries. In particular, this increased the difficulty of simulating the thermal response of groundwater‐fed rivers during the hot spells of 2003. This modelling by coupling subwatershed and Strahler order for temperature simulations is less time‐consuming and has proven to be extremely consistent for large rivers, where the addition of streambed inputs is adequate to describe the effect of groundwater inputs on their thermal regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
为了探究金沙江中上游流域未来径流变化趋势,为流域防洪规划提供依据,基于SWAT水文模型,选用CMIP5数据集建立未来时段的全球气候模式,从时间和空间尺度解析研究区2022—2050年径流变化趋势。结果表明:流域2022—2050年降水量和平均气温均高于基准期,并且呈现上升趋势,其中流域南部降水量增幅较大,流域北部气温增幅较大。在RCP2.6、RCP4.5、RCP8.5 3种气候情景下,2022—2050年年径流量均呈现增大趋势,变化率分别为5.79×108、5.53×108、2.99×108 m3/a。相较于基准期,未来春季和秋季径流量呈现减少趋势,夏季和冬季径流量呈现增加趋势,冬季径流量增幅达到了10%。流域产流量呈现从西北到东南依次增加的特点,相较于基准期,流域南部产流量均呈现增加趋势。未来径流量呈现增加趋势,冬季径流量增幅较大,可能会发生冬汛等极端水文事件,流域南部受洪水威胁的可能性进一步增大。  相似文献   

16.
This study was conducted to assess water availability and consumption in the Karkheh River Basin in Iran using secondary data and freely available satellite data. Precipitation was estimated using geo-statistical techniques while a Surface Energy Balance approach was selected for evapotranspiration estimation. The spatial distribution of actual evapotranspiration (ETa) for the Karkheh Basin has been estimated by use of 19 cloud free Moderate Resolution Imaging Spectroradiometer (MODIS) images, which cover a complete cropping year from November 2002 to October 2003. ETa estimates were compared to potential crop evapotranspiration (ETp) estimates for two predominantly irrigated wheat areas in Upper and Lower Karkheh. Differences were found to be 12.5% and 11.7% respectively. Results of the ETa and precipitation estimates reveal that for the study period, the Karkheh Basin received 18,507 × 106m3 as precipitation while ETa is estimated at 16,680 × 106m3. Estimated outflow from the basin for the study period only is 7.8% of the precipitation and indicates that water is a very scarce resource in the Karkheh basin. The basin has been divided in sub-basins to allow for more detailed analysis and results indicate that water balance closure at sub-basin scale ranges from 7.2% to 0.6% of the precipitation. This suggests that the water balance is sufficiently understood for policy and decision making.  相似文献   

17.
HEC-HMS模型在南水北调东线水资源调度中的应用   总被引:1,自引:0,他引:1  
介绍了HEC-HMS水文模型系统,利用HEC—GeoHMS模块,由数字高程模型(DEM)生成洪泽湖、骆马湖、南四湖及东平湖上游数字流域,并对每个流域进行降雨径流模拟,模型考虑了流域内水利工程及河道取水的影响。结果表明:HEC-HMS模型应用方便,对南水北调东线沿线地区有较好的适用性,计算结果和观测入湖流量有较好的拟合,能为东线工程的水资源调度决策提供区间来水模拟预报。  相似文献   

18.
Due to sudden declines in groundwater levels in Neyshabur Plain, one of the most important parts of water supply management programs at the catchment scale is to accurately predict the groundwater level fluctuations. In this paper, the rainfall data from 22 rain gauges and evapotranspiration stations during the period of 1974–2015 were used to find the cumulative effects of rainfall and evapotranspiration on fluctuations in groundwater levels. First, using the Hargreaves-Samani method, the modified evapotranspiration was calculated on the plain. Using the Kriging method, the average amount of precipitation and evapotranspiration of the reference plant was also calculated. Then, employing the fuzzy logic, the fuzzy standardized evapotranspiration and precipitation index (SEPI) was produced. The correlation results between SEPI indicator and fluctuations in groundwater levels showed that the long-term time scales had greater correlations. Thus, the correlations for the time scales of 30, 36, 42, 48, 54 and 60 months were respectively obtained as 0.56, 0.68, 0.71, 0.69, 0.59 and 046. These six parameters were used for principal components analysis (PCA) and the selection criteria (SC) index was used to select the properties affecting every component. The ranking results of testing local linear regression with PCA (LLR-PCA) and dynamic local linear regression with PCA (DLLR-PCA) models, Broyden, Fletcher, Goldfarb, Shanno algorithm with PCA (BFGS-PCA) neural network and Conjugate Gradient-PCA indicated that the DLLR model with three main components had the best performance so that the values of R2, RMSE, MBE and MAE were obtained as 0.84, 0.215, 0.028 and 0.162, respectively. The results generally showed that due to severe linearity between SEPI indicator and its time scales, the use of PCA is essential for simulating fluctuations of the groundwater levels.  相似文献   

19.
针对小流域暴雨洪水预报难的问题,利用模块化小流域暴雨洪水预报FFMS(Flash Flood Modul Simulation System)模型和HEC-HMS(Hydrologic Engineering Center Hydrological Model System)模型,以河南栾川、韩城及辽宁郝家店、梨庇峪4个山丘区小流域为例,对比分析了4个流域的暴雨洪水预报过程,以洪峰相对误差、峰现时间误差以及纳什系数等为评价准则,比较和分析了2个模型的预报精度和适用性。实例验证结果表明:虽然2种模型均能实现小流域暴雨洪水的预报,但从3个评价准则的结果来看,FFMS模型的预报精度优于HEC-HMS模型。研究成果证明了FFMS模型在山丘区小流域暴雨洪水预报中的有效性和可行性,可以在类似山丘区小流域暴雨洪水预报中进行推广应用。  相似文献   

20.
Abstract

The greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, and SF6) concentrations in the atmosphere have increased very much since the industrial revolution. The greenhouse gas effect has been projected to cause a global average temperature increase on the order of 1.4 to 5.8°C over the period of 1990 to 2100. The global average annual precipitation is projected to increase during the 21st century due to the greenhouse effect. The impact of climate change on hydrology and water resources in the three catchments of Swaziland (Komati, Mbuluzi and Ngwavuma) has been evaluated using General Circulation Model results (rainfall, potential evapotranspiration, air temperature etc.) as inputs to a rainfall runoff model. Three General Circulation Models (GCMs) namely: Canadian Climate Change Equilibrium (CCC-EQ); Geophysical Fluid Dynamics Laboratory (GFDL) and United Kingdom Transient Resilient (UKTR) were found appropriate for use to project the temperature and precipitation changes for Swaziland for year 2075. This information was used to generate the temperature, precipitation and potential evapotranspiration values for the three catchments for year 2075 which was input into a calibrated WatBall rainfall runoff model. Simulation results without taking into consideration of water use projections show that there will be high flows during the summer months but low flows during the winter months. Simulation results after taking into consideration of water use projections show a water deficit from June to September in both the Komati, and Ngwavuma catchments and a water deficit from May to September in the Mbuluzi catchment. This means that the environmental water needs and Swaziland's water release obligation in the three catchments to South Africa and Mozambique will not be met during the winter months under expected climate change conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号