首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat transfer enhancement in a 3-D microchannel heat sink (MCHS) using nanofluids is investigated by a numerical study. The addition of nanoparticles to the coolant fluid changes its thermophysical properties in ways that are closely related to the type of nanoparticle, base fluid, particle volume fraction, particle size, and pumping power. The calculations in this work suggest that the best heat transfer enhancement can be obtained by using a system with an Al2O3–water nanofluid-cooled MCHS. Moreover, using base fluids with lower dynamic viscosity (such as water) and substrate materials with high thermal conductivity enhance the thermal performance of the MCHS. The results also show that as the particle volume fraction of the nanofluid increases, the thermal resistance first decreases and then increases. The lowest thermal resistance can be obtained by properly adjusting the volume fraction and pumping power under given geometric conditions. For a moderate range of particle sizes, the MCHS yields better performance when nanofluids with smaller nanoparticles are used. Furthermore, the overall thermal resistance of the MCHS is reduced significantly by increasing the pumping power. The heat transfer performance of Al2O3–water and diamond–water nanofluids was 21.6% better than that of pure water. The results reported here may facilitate improvements in the thermal performance of MCHSs.  相似文献   

2.
This paper discusses the impact of using various types of nanofluids on heat transfer and fluid flow characteristics in triangular shaped microchannel heat sink (MCHS). In this study, an aluminum MCHS performance is examined using water as a base fluid with different types of nanofluids such as Al2O3, Ag, CuO, diamond, SiO2, and TiO2 as the coolants with nanoparticle volume fraction of 2%. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite volume method. It is inferred that diamond-H2O nanofluid has the lowest temperature and the highest heat transfer coefficient, while Al2O3-H2O nanofluid has the highest temperature and the lowest heat transfer coefficient. SiO2-H2O nanofluid has the highest pressure drop and wall shear stress while Ag-H2O nanofluid has the lowest pressure drop and wall shear stress among other nanofluid types. Based on the presented results, diamond-H2O and Ag-H2O nanofluids are recommended to achieve overall heat transfer enhancement and low pressure drop, respectively, compared with pure water.  相似文献   

3.
In this study, microchannel heat sink (MCHS) performance using nanofluids as coolants is addressed. We first carried out a simple theoretical analysis that indicated more energy and lower MCHS wall temperature could be obtained under the assumption that heat transfer could be enhanced by the presence of nanoparticles. Experiments were then performed to verify the theoretical predictions. A silicon MCHS was made and CuO–H2O mixtures without a dispersion agent were used as the coolants. The CuO particle volume fraction was in the range of 0.2 to 0.4%. It was found that nanofluid-cooled MCHS could absorb more energy than water-cooled MCHS when the flow rate was low. For high flow rates, the heat transfer was dominated by the volume flow rate and nanoparticles did not contribute to the extra heat absorption. The measured MCHS wall temperature variations agreed with the theoretical prediction for low flow rate. For high flow rate, the measured MCHS wall temperatures did not completely agree with the theoretical prediction due to the particle agglomeration and deposition. It was also found that raising the nanofluid bulk temperature could prevent the particles from being agglomerated into larger scale particle clusters. The experimental result also indicated that only slightly increase in pressure drop due to the presence of nanoparticles in MCHS operation.  相似文献   

4.
Heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside typical radial flow cooling systems are numerically investigated in this paper. The laminar forced convection flow of these nanofluids between two coaxial and parallel disks with central axial injection has been considered using temperature dependent nanofluid properties. Results clearly indicate that considerable heat transfer benefits are possible with the use of these fluid/solid particle mixtures. For example, a Water/Al2O3 nanofluid with a volume fraction of nanoparticles as low as 4% can produce a 25% increase in the average wall heat transfer coefficient when compared to the base fluid alone (i.e., water). Furthermore, results show that considerable differences are found when using constant property nanofluids (temperature independent) versus nanofluids with temperature dependent properties. The use of temperature-dependent properties make for greater heat transfer predictions with corresponding decreases in wall shear stresses when compared to predictions using constant properties. With an increase in wall heat flux, it was found that the average heat transfer coefficient increases whilst the wall shear stress decreases for cases using temperature-dependent nanofluid properties.  相似文献   

5.
This work presents a numerical investigation of turbulent forced convection of a nanofluid over a heated cavity in a horizontal duct. Heat transfers in separated flows are frequently encountered in engineering applications, such as: heat exchangers, axial and centrifugal compressor blades, gas turbines blades, and microelectronic circuit boards. Thus, it is very essential to understand the mechanisms of heat transfer in such regions in order to enhance heat transfer. Different volume fractions of nanoparticles are presented in the base fluid and different types of nanoparticles are used. The objective of this study is to check the effect of nanofluid on heat transfer in such a configuration. Numerical simulations are performed for pure water and four nanofluids (Cu, CuO, Ag, and Al2O3). The results are analyzed through the thermal and dynamical fields with a particular interest to the skin friction coefficient and Nusselt number evolutions. The average Nusselt number increases with the volume fraction of nanoparticles for the whole tested range of Reynolds number. A correlation of average Nusselt number versus Reynolds number and volume fraction of each type of nanoparticles over the cavity wall is proposed in this paper.  相似文献   

6.
Improving the working fluid transport properties is a way to enhance the thermal performance of heat transfer equipment. In this research work, a two-dimensional numerical simulation is used to investigate the thermal performance of a nanofluid-filled cylindrical heat pipe. The considered nanofluid is pure water as the base fluid with dispersed Al2O3 nanoparticles. Effects of particle volume fractions, particle diameters, various heat inputs, and wick structures on thermal performance of the heat pipe are investigated and the results are compared with that of the pure water. A comparison is made for the first time between the results of a simulation by considering fluid flow in the liquid-wick region and treating this region as pure conduction. The results show the heat pipe thermal performance enhancement and a decrease in thermal resistance for about 31% when 5% particle volume fraction with a particle diameter of 10 nm is used. Also, an insignificant effect of heat input on thermal resistance and variation of pressure distribution in the presence of nanoparticles are observed.  相似文献   

7.
Numerical investigations are performed to investigate the laminar flow and heat transfer characteristics of trapezoidal MCHS using various types of base nanofluids and various MCHS substrate materials on MCHS performance. This study considered four types of base fluids including water, ethylene glycol (EG), oil, and glycerin with 2% volume fraction of diamond nanoparticle, and four types of MCHS substrate materials including copper, aluminium, steel, and titanium. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using the finite volume method. It is found that the best uniformities in heat transfer coefficient and temperature among the four mixture flows can be obtained using glycerin-base nanofluid followed by oil-base nanofluid, EG-base nanofluid, and water-base nanofluid heat sinks. However, the heat transfer performance of water-base nanofluid can be greatly enhanced in steel made substrate heat sink.  相似文献   

8.
The aim of this study is to determine the upper limitations of the particle volume fraction for heat transfer performance of TiO2–water nanofluids in microchannels. Nanofluids were prepared by the addition of TiO2 metallic nanoparticles into distilled water chosen as base fluid at five different volumetric ratios (0.25%, 0.5%, 1.0%, 1.5%, and 2.0%). The effects of the Reynolds number (100–750) and particle volume fraction at constant microchannel height (200 μm) on heat transfer and pressure drop characteristics were analyzed experimentally. Adding metallic oxide particles with nano dimensions into the base fluid did not cause excessive increase of friction coefficient but provided higher heat transfer than that of pure water. It was also observed that water–TiO2 nanofluid increased heat transfer up to 2.0 vol%, but heat transfer decreased after 2.0 vol%. Furthermore, the thermal resistance was calculated and it was seen that adding nanoparticles with an average diameter smaller than 25 nm into the base fluid caused the thermal resistance to decrease.  相似文献   

9.
Microchannel heat sinks (MCHS) can be made with channels of various shapes. Their size and shape may have remarkable influence on the thermal and hydrodynamic performance of MCHS. In this paper, numerical simulations are carried out to solve the three-dimensional steady and conjugate heat transfer governing equations using the Finite-Volume Method (FVM) of a water flow MCHS to evaluate the effect of shape of channels on the performance of MCHS with the same cross-section. The effect of shape of the channels on MCHS performance is studied for different channel shapes such as zigzag, curvy, and step microchannels, and it is compared with straight and wavy channels. The MCHS performance is evaluated in terms of temperature profile, heat transfer coefficient, pressure drop, friction factor, and wall shear stress. Results show that for the same cross-section of a MCHS, the temperature and the heat transfer coefficient of the zigzag MCHS is the least and greatest, respectively, among various channel shapes. The pressure drop penalty for all channel shapes is higher than the conventional straight MCHS. The zigzag MCHS has the highest value of pressure drop, friction factor, and wall shear stress followed by the curvy and step MCHS, respectively.  相似文献   

10.
The thermal and hydraulic performance of Al2O3-water nanofluid forced convective heat transfer through a concave/convex convergent pipe has been investigated in this work. The investigation is performed for a wide variety of concavity/convexity in the pipe wall profile, volume fraction of nanoparticles, and Reynolds number. An excellent agreement has been confirmed between the results of our numerical model and the available data from the literature. The findings of the current work reveal that as the pipe wall tends toward the concavity, the average heat transfer coefficient and the pressure drop along the pipe increase. Further, the concave wall profile shows a prominent enhancement in heat transfer up to 41%; while, the convex wall profile provides a sustainable and superior performance factor up to 1.223 compared to the straight one, respectively. Moreover, at any fixed wall profile, a modest rise in heat transfer and pressure drop has been observed when the nanoparticles volume fraction increases. According to the information provided in this study, the addressed configuration improvements play a crucial role in augmenting heat transfer more than employing nanofluids.  相似文献   

11.
The heat transfer effectiveness of nanofluids is adversely affected by the delay in convection onset. The lesser effectiveness, when compared to that of base fluid, is observed in a range of nanofluid layer thickness. The heat transfer coefficient of water–Al2O3 nanofluid can be enhanced by sustaining the equilibrium between Rayleigh number, temperature, particle volume fraction, and enclosure aspect ratio. In this paper, the specific correlation of fluid layer thickness and the onset of convection, which can significantly dominate the heat transfer characteristics of nanofluids are investigated using the concept of critical Rayleigh number. The water layer thickness for convection onset is first experimentally assessed for different real-life heat flux densities. It is then performed for Al2O3–water nanofluid for varying volume fractions. With the increase in volume fraction even though thermal conductivity increases, the overall heat transfer enhancement of the nanofluid is reduced. Temperature involved (heat flux density), the volume fraction of the nanofluid used, nanofluid layer thickness (space availability for the cooling system), and mass of the nanoparticle influence heat transfer enhancement. A higher volume fraction may not always result in enhancement of heat transfer as far as nanofluids are concerned.  相似文献   

12.
A comprehensible theoretical formulation has been obtained after including the (a) nanofluid (water-Al2O3) as a working medium and (b) kinetic-theory based expressions for mass transport, to explore and explicate the characteristics of evaporating thin-film region in a microfluidic channel at uniform wall temperature with 2?°C of wall superheat. The model includes the expressions for heat transfer (as heat flux) and effective thermophysical properties of nanofluid. This study evaluates the effect of incorporation of nanofluid in details and results obtained shows an increment of 34% in total heat transfer for 2% volume fraction of nanoparticles.  相似文献   

13.
This paper deals with spherical nanoparticles size effects on thermal performance and pressure drop of a nanofluid in a trapezoidal microchannel-heat-sink (MCHS). Eulerian–Eulerian two-phase numerical approach is utilized for forced convection laminar, incompressible and steady three dimensional flow of copper-oxide nanoparticles with water as base fluid at 100 to 200 nm diameter and 1% to 4% volume concentration range. Continuity, momentum, energy and volume conservation equations are solved at whole of the computational domain via finite volume method. Obtained results signify that pressure drop increases 15% at Re = 500 and 1% volume concentration while nanoparticles diameter increases from 100 to 200 nm. By increasing volume concentration, nanoparticles size effect becomes more prominent and it is observed that increment rate of pressure drop is intensified for above 150 nm particles diameter. Unlike the pressure drop, heat transfer decreases with an increase in nanoparticles diameter. Also, it is observed that with an increase in nanoparticles diameter, average Nusselt number of base fluid decreases more than that of the nanoparticles and this signifies that base fluid has more efficacy on thermal performance of copper-oxide nanofluid.  相似文献   

14.
In this paper the convective heat transfer and friction factor of the nanofluids in a circular tube with constant wall temperature under turbulent flow conditions were investigated experimentally. Al2O3 nanoparticles with diameters of 40 nm dispersed in distilled water with volume concentrations of 0.1–2 vol.% were used as the test fluid. All physical properties of the Al2O3–water nanofluids needed to calculate the pressure drop and the convective heat transfer coefficient were measured. The results show that the heat transfer coefficient of nanofluid is higher than that of the base fluid and increased with increasing the particle concentrations. Moreover, the Reynolds number has a little effect on heat transfer enhancement. The experimental data were compared with traditional convective heat transfer and viscous pressure drop correlations for fully developed turbulent flow. It was found that if the measured thermal conductivities and viscosities of the nanofluids were used in calculating the Reynolds, Prandtl, and Nusselt numbers, the existing correlations perfectly predict the convective heat transfer and viscous pressure drop in tubes.  相似文献   

15.
In this paper, heat transfer and pressure drop characteristics of copper–water nanofluid flow through isothermally heated corrugated channel are numerically studied. A numerical simulation is carried out by solving the governing continuity, momentum and energy equations for laminar flow in curvilinear coordinates using the Finite Difference (FD) approach. The investigation covers Reynolds number and nanoparticle volume fraction in the ranges of 100–1000 and 0–0.05 respectively. The effects of using the nanofluid on the heat transfer and pressure drop inside the channel are investigated. It is found that the heat transfer enhancement increases with increase in the volume fraction of the nanoparticle and Reynolds number, while there is slight increase in pressure drop. Comparisons of the present results with those available in literature are presented and discussed.  相似文献   

16.
An interrupted microchannel heat sink (IMCHS) using nanofluids as working fluids is analyzed numerically to increase the heat transfer rate. The rectangular IMCHS is designed with length and width of 10 mm and 0.057 mm respectively while optimum cut section number, nc = 3. The three dimensional governing equations (continuity, momentum and energy) were solved using finite volume method (FVM). Parametric study of thermal performance between pure water-cooled and nanofluid-cooled IMCHS are evaluated for particle diameter in the range of, 30 nm to 60 nm, volume fraction in the range of, 1% to 4%,nanofluid type of Al2O3, CuO, and SiO2 at Reynolds number range of 140 to 1034 are examined. The effects of the transport properties, nanofluid type, nanoparticle volume fraction and particle diameter are investigated on the IMCHS performance. It is inferred that the Nu number for IMCHS is higher than the conventional MCHS with a slight increase of the pressure drop. It is found that highest thermal augmentation is predicted for Al2O3, followed by CuO, and finally for SiO2 in terms of Nunf/Nupw in the IMCHS. The Nu number increased with the increase of nanoparticle volume fraction and with the decrease of nanoparticle diameter.  相似文献   

17.
Nucleate pool boiling of Al2O3 based aqueous nanofluid on flat plate heater has been studied experimentally. For boiling of nanofluid (< 0.1 vol.%) on heating surface with ratio of average surface roughness to average diameter of particles much less than unity when boiling continue to CHF, the heat transfer coefficient of nanofluid boiling reduces while critical heat flux (CHF) increases. CHF enhancement increased with volume fraction of nanoparticles. Atomic force microscope (AFM) images from boiling surface showed that after boiling of nanofluid the surface roughness increases or decreases depending on initial condition of heater surface. Changes in boiling surface topology during different regions of boiling, wettability and thermal resistance of heater surface owing to nanoparticles deposition cause to variations in nanofluids boiling performance.  相似文献   

18.
In this study, forced convection flows of nanofluids consisting of water with TiO2 and Al2O3 nanoparticles in a horizontal tube with constant wall temperature are investigated numerically. The horizontal test section is modeled and solved using a CFD program. Palm et al.'s correlations are used to determine the nanofluid properties. A single-phase model having two-dimensional equations is employed with either constant or temperature dependent properties to study the hydrodynamics and thermal behaviors of the nanofluid flow. The numerical investigation is performed for a constant particle size of Al2O3 as a case study after the validation of its model by means of the experimental data of Duangthongsuk and Wongwises with TiO2 nanoparticles. The velocity and temperature vectors are presented in the entrance and fully developed region. The variations of the fluid temperature, local heat transfer coefficient and pressure drop along tube length are shown in the paper. Effects of nanoparticles concentration and Reynolds number on the wall shear stress, Nusselt number, heat transfer coefficient and pressure drop are presented. Numerical results show the heat transfer enhancement due to presence of the nanoparticles in the fluid in accordance with the results of the experimental study used for the validation process of the numerical model.  相似文献   

19.
The mixed convection fluid flow in a square cavity filled with AL2O3‐water non‐Newtonian nanofluid is numerically analyzed. The left and right vertical boundaries of the enclosure have been kept in the constant temperature. Remaining walls of the cavity have been considered to have adiabatic boundary condition. Two different cases have been considered. In the first case, left and right side walls have been moved vertically with constant speed Vb in opposite directions. In the second case, the directions of their motions have been reversed. The transport equations, written in terms of the primitive variables for the non‐Newtonian nanofluid, have been solved numerically using the finite volume method. The shear stresses were calculated using the Ostwald‐de Waele model for the shear‐thinning nanofluid. The model introduced by Patel et al was used to obtain the thermal conductivity of the nanofluid. The variation of the fluid flow with respect to the Richardson number and volume fraction of the nanoparticles was investigated through a parametric study. Even though increasing the volume fraction of nanoparticles leads to heat transfer enhancement, for the second case of this study, for Ri = 1, the average Nusselt number initially drops sharply by increasing the volume fraction of nanoparticles, then remains constant.  相似文献   

20.
Entropy generation of an Al2O3–water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side‐wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 and 107 and volume fraction between 0 and 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation, and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer, and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号