首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Circulating particle flow and behavior of air bubbles in a two-dimensional gas-solid fluidized bed of various superficial air velocities are investigated by recording videos of movement of a plastic pellet put into the fluidized bed and rising air bubbles using a video camera. The movement velocity of the plastic pellet and properties of the air bubbles such as the bubble rising velocity and the bubble distribution coefficient, which shows the proportion of the bubbles erupting at the center of the bed surface, are measured by analyzing the videos. It is found that the plastic pellet moves following the circulating particle flow; the particles rise up at the center of a column and fall down near the side walls, and that the movement velocity increases with the superficial air velocity. The bubble rising velocity, the apparent erupting bubble size and the bubble distribution coefficient increase, and the bubble eruption frequency slightly decreases, with the superficial air velocity. These results indicate that the circulating particle flow is generated by the rising air bubbles. In particular, the fact that the air bubbles rise at the center of the column and coalesce with other bubbles is closely related to the generation of the circulating particle flow.  相似文献   

2.
Some discrepancy exists in the results of He II counterflow experiments obtained using particle image velocimetry (PIV) when compared with those obtained using particle tracking velocimetry (PTV): using PIV, it was observed that tracer particles move at roughly half the expected normal fluid velocity, \(v_n/2\), while tracer particles observed using PTV moved at approximately \(v_n\). A suggested explanation is that two different flow regimes were examined since the range of heat flux applied in each experiment was adjacent but non-overlapping. Another PTV experiment attempted to test this model, but the applied heat flux did not overlap with any PIV experiments. We report on the beginnings of a study of solid \(\hbox {D}_2\) particle motion in counterflow using PTV, and the heat flux range overlaps that of all previous visualization studies. The observed particle velocity distribution transitions from a two-peak structure to a single peak as the heat flux is increased. Furthermore, the mean value of one peak in the bi-modal distributions grows at approximately the same rate as \(v_n\), while the mean value of the single-peak distributions grows at roughly \(0.4v_n\), in reasonable agreement with both previous experiments and with the suggested model.  相似文献   

3.
This study proposed the fluidized particles with dielectric barrier discharge (DBD) plasma in a slot-rectangular divergent-base spouted bed and focused on the dynamics of solid particles with the plasma irradiation. Two bed materials (Polypropylene (PP) particles and Polyamide (PA) particles) with same diameter (3 mm) were fluidized in this study. Fluidization parameters included gas velocity (7.4–14.9 m/s), particle amount (100–500), and plasma parameter (apply voltage, 0 and 7 kV) as the applied voltage were investigated here. Particle velocity profiles were analyzed through the methods of particle image velocimetry (PIV) and particle tracking velocimetry (PTV). Results show that the particle velocity was increased with the plasma irradiation, mainly by the enhancement in the vertical direction. The location of the highest particle velocity area related to the fluidization behavior of particles. With the increase of superficial gas velocity, the location of the highest particle velocity area raised along the central line but not reached the top of the solid bed. While the electron temperature of Ar plasma decreased with the addition of particles. Two electric fields (external electric field and surface charge electric field) presenting in the system were assumed to give the reason for the changes of the particle fluid dynamics.  相似文献   

4.
The effect of a circular configuration of intense vertical immersed tubes on the hydrodynamic parameters has been investigated in a gas-solid fluidized bed of 0.14?m inside diameter. The experiments were performed using glass beads solid particles of 365?μm average particle size, with a solid density of 2500?kg/m3 (Geldart B). An advanced optical fiber probe technique was used to study the behavior of six essential local hydrodynamic parameters (i.e., local solids holdup, particles velocity, bubble rise velocity, bubble frequency, and bubble mean chord length) in the presence of vertical immersed tubes. The experimental measurements were carried out at six radial positions and three axial heights, which represent the three key zones of the bed: near the distributor plate, the middle of the fluidizing bed, and near the freeboard of the column. Furthermore, four superficial gas velocities (u/umf?=?1.6, 1.76, 1.96, and 2.14) were employed to study the effect of operating conditions. The experimental results demonstrated that the vertical internals had a significant effect on all the studied local hydrodynamic characteristics such that when using internals, both the solids holdup and bubble mean chord length decreased, while the particles velocity, bubble rise velocity, and bubble frequency increased. The measured values of averaged bubble rise velocities and averaged bubble chord lengths at different axial heights and superficial gas velocities have been compared with most used correlations available in the literature. It was found that the measured values are in good agreement with values calculated using predicted correlation for the case without vertical internals. While, the absolute percentage relative error between the measured and calculated values of these two hydrodynamic parameters indicate large differences for the case of vertical internals.  相似文献   

5.
Hydrodynamics of gas-solid fluidized bed was investigated by analyzing its pressure fluctuations using cross recurrence quantification analysis (CRQA). Pressure fluctuations were measured in a lab scale fluidized bed of various particle sizes at different gas velocities. First, the CRQA was applied to a number of well-known dynamic systems and the results demonstrated that it is a powerful method to detect similarities between nonlinear signals. Then, it was shown that graphical structures within the cross recurrence plot of pressure fluctuations of a fluidized bed vary with both superficial gas velocity and particle size. It was found that determinism and cross recurrence rate of non-normalized data initially decrease and then increase with increasing the gas velocity. When the signal is initially normalized, determinism and entropy do not change with the superficial gas velocity while cross recurrence rate is sensible to changes in the superficial gas velocity. It was concluded that entropy can be used for detecting changes of particle size and if a proper reference state is chosen, entropy can be a powerful index for detecting changes in the size of particles in a fluidized bed.  相似文献   

6.
An investigation has been made into the entrainment of shale flotation concentrate and polyvinyl chloride under fluidization conditions. The kinetics of entrainment are described by an equation given in [5].Notation dm mean particle size - xi contribution by weight of narrow fraction - di particle diameter of narrow fraction - H height of stationary bed - D diameter of apparatus (diameter of cylindrical part of cylindricalconical apparatus) - air flow velocity over whole section of apparatus - wc critical particle velocity - duration of test - Nr number of particles removed - k1, k2 kinetic constants defined in [5]  相似文献   

7.
Devolatilization of oil sludge pellets was investigated in nitrogen and air atmosphere in a lab-scale bubbling fluidized bed (BFB). Devolatilization times were measured by the degree of completion of the evolution of the volatiles for individual oil sludge pellets in the 5-15 mm diameter range. The influences of pellet size, bed temperature and superficial fluidization velocity on devolatilization time were evaluated. The variation of devolatilization time with particle diameter was expressed by the correlation, τ(d) = Ad(p)(N). The devolatilization time to pellet diameter curve shows nearly a linear increase in nitrogen, whereas an exponential increase in air. No noticeable effect of superficial fluidization velocity on devolatilization time in air atmosphere was observed. The behavior of the sludge pellets in the BFB was also focused during combustion experiments, primary fragmentation (a micro-explosive combustion phenomenon) was observed for bigger pellets (>10mm) at high bed temperatures (>700 °C), which occurred towards the end of combustion and remarkably reduce the devolatilization time of the oil sludge pellet. The size analysis of bed materials and fly ash showed that entire ash particle was entrained or elutriated out of the BFB furnace due to the fragile structure of oil sludge ash particles.  相似文献   

8.
A spouted bed with longitudinal vortex generator (LVG) of sphere was built to enhance radial movement of particles. Particle Image Velocimetry (PIV) was applied to explore effects of longitudinal vortex flow and physical properties of particles on their radial velocity in a 152-mm-diametered spouted bed. The results show that, Compared with the conventional spouted bed, the existence of longitudinal vortex generator gives rise to a large amount of secondary fine vortex flow in the cross section of spouted bed. The enhancement factors of particles movement η with different particle densities are all greater than 1. The smaller the particle density, the more significant the effect of the longitudinal vortex on the radial velocity of the particles. The single-row LVGs can produce a good radial enhancement effect of particle movement when the particle handling capacity is small (H0 = 165 mm). With the increase of the height of the static bed (H0), the enhancement of the radial velocity of particles in the spouted bed by multi-row LVGs (three rows) increases gradually, which indicates that the multi-row LVGs have a better overall effect on the enhancement of particle motion in the spouted bed with more particle handling capacity (H0 = 195 mm, 225 mm).  相似文献   

9.
《Advanced Powder Technology》2021,32(9):3297-3313
This study investigates the fluidization of lactose carriers from a powder bed subjected to a normal force in a channel flow using high-speed imaging, particle image velocimetry (PIV), and high-speed, long-distance microscopy (HS-LDM). Pharmaceutical lactose carriers (LH200 and SV010) with different cohesiveness and fines percentages were examined in this study. Airflow velocities in the range of 1.4 m/s and 7m/s were tested, corresponding to flow rates ranging from 20 to 100 L/min. The use of HS-LDM in tandem with PIV has enabled measurement of the slip factor between particles and conveying airflow as well as metrics that help to identify dose homogeneity as a function of location in the channel flow. The results indicate a lower slip ratio and a larger change in powder particle size bands percentages along with channel height in the region near the powder bed, because of flow recirculation and higher velocity fluctuation observed in that region.  相似文献   

10.
Experimental studies concerning the characterization of a dilute swirling gas-solid flow were carried out in a vertical pipe with a height of 12 m and an inner diameter of 80 mm. Polyethylene pellets, with mean diameter of 3.2 mm, were used as test particles. The initial swirl number varied from 0.0 to 0.94, the mean gas velocity varied from 9 to 25 m/s, and the solid-gas ratio varied from 0.2 to 0.7. In this study, the particle velocity and concentration profiles were measured by the photographic image technique for both nonswirling (axial) and swirling gas-solid flows. It was found that the particle velocity of the swirling flow is lower than that of the axial flow in the range of high gas velocity; however, high particle velocity in the former flow can be obtained in the range of low gas velocity. The particle velocity profiles, on the other hand, were found to be nearly uniform in both the swirling and axial flows. The particle concentration profiles in the swirling flow exhibited symmetric distributions with respect to the pipe axis, and a higher particle concentration appeared in the vicinity of the wall located in the acceleration region.

gas-solid two-phase flow particle concentration particle velocity pipeline swirling flow  相似文献   

11.
Transient hydrodynamics phenomena in the fluidized bed combustor (FBC) freeboard have been critical in the past two decades. Within a 152 mm ID FBC cold model, solid particle transient velocities were measured and analyzed with the assistance of advanced laser-based particle image velocimetry (PIV) instrumentation. Two layers of swirling secondary air were injected into the cold model. The PIV system was applied to the FBC cold model to visualize transient solid particle velocity. A series of transient solid particle velocity profiles were generated for the factorial analysis. In each profile, the solid particle velocity vectors (Vx and Vy) for 10 × 10 grids were generated. Analysis of variance (ANOVA) was used to determine the significant factors that affect transient solid particle velocities, time, and position coordinates. Then, the 1010 factorial design method was used to develop a specific empirical model of transient solid particle velocity in the FBC freeboard, which was in the shape of Vx = f1(t, x, y) and Vy = f2(t, x, y).

This unique factorial analysis method proved to be a very effective and practical method to evaluate experimental conditions and analyze experimental results in the FBC systems.  相似文献   

12.
The mean square of particle velocity fluctuations, , which is directly related to the so-called granular temperature, plays an important role in the flow, mixing, segregation and attrition phenomena of particulate systems and associated theories. It is, therefore, important to be able to measure this quantity. We report here in detail our use of diffusing wave spectroscopy (DWS) to measure the mean square particle velocity fluctuations for a 2D non-circulating gas fluidized bed of hollow glass particles whose mean diameter and effective density are 60 m and 200 kg/m3, respectively. Mean square particle velocity fluctuations were observed to increase with superficial velocity, U s, beyond the minimum fluidization velocity. Following the uniform fluidization theory of Batchelor (1988), the function in the expression was also determined and shown to increase from zero at a solids loading of to a maximum at before decreasing again to zero at . The spatial variation of the mean square particle velocity fluctuations was also determined and shown to be approximately symmetrical about the centreline where it is also maximal, and to increase with height above the distributor.  相似文献   

13.
In order to prevent flow blockage phenomenon and to reduce the impact of particles on the wall of the bend, an experimental study of the swirling flow pneumatic conveying system with a horizontal curved pipe was carried out in this work. The experiment was performed in a 90-deg pipe bend with pipe diameter 75 mm and centerline curvature ratio 12. The straight pipes with 75 mm inside diameter at the upstream and downstream of the bend were 1.3 m and 4.0 m in lengths, respectively. The initial swirl number was varied from 0.22 to 0.60, the mean air velocity from 10 to 20 m/s, and the solid mass flow rate from 0.07 to 0.68 kg/s. It is found that in the lower air velocity range, the overall pressure drop of the swirling flow pneumatic conveying shows a lower tendency than that of axial flow pneumatic conveying. The minimum air velocities can be decreased by using the swirling flow pneumatic conveying. From the visualization of particle flow patterns, the impact of particles on the wall of the bend can be reduced using the swirling flow.  相似文献   

14.
ABSTRACT

A horizontal dilute-phase pneumatic conveying system using vertically oscillating soft fins at the inlet of the gas–particle mixture was studied to reduce the power consumption and conveying velocity in the conveying process. The effect of different fin lengths on horizontal pneumatic conveying was studied in terms of the pressure drop, conveying velocity, power consumption, particle velocity, and intensity of particle fluctuation velocity for the case of a low solid mass flow rate. The conveying pipeline consisted of a horizontal smooth acrylic tube with an inner diameter of 80 mm and a length of approximately 5 m. Two types of polyethylene particles with diameters of 2.3 and 3.3 mm were used as conveying materials. The superficial air velocity was varied from 10 to 17 m/s, and the solid mass flow rates were 0.25 and 0.20 kg/s. Compared with conventional pneumatic conveying, the pressure drop, MPD (minimum pressure drop), critical velocities, and power consumption can be reduced by using soft fins in a lower air velocity range, and the efficiency of fins becomes more evident when increasing the length of fins or touching particles stream by the long fins. The maximum reduction rates of the MPD velocity and power consumption when using soft fins are approximately 15% and 26%, respectively. The magnitude of the vertical particle velocity for different lengths of fins is clearly lower than that of the vertical particle velocity for a non-fin conveying system near the bottom of the pipeline, indicating that the particles are easily suspended. The intensities of particle fluctuation velocity of using fins are larger than that of non-fin. The high particle fluctuation energy implies that particles are easily suspended and are easily conveyed and accelerated.  相似文献   

15.
A soft-sphere discrete particle model based on re-arrangement of the gas phase governing equations has been developed to investigate the formation of a single bubble due to a central jet pulse in two-dimensional coarse-particle fluidized beds. A comprehensive study is made on the influence of bed width, particle properties and jet velocity on the bubble characteristics. The bubble grows heterogeneously when its diameter reaches one third of the bed width and elongates rapidly when its transverse size exceeds about one half of the bed width. At a given superficial velocity, a bed with a larger width leads to a decrease of gas leakage of the bubble. The influence of particle density and particle size on the bubble characteristics can be considered as the effect of the minimum fluidization velocity, which is consistent with the results obtained by two-fluid model in literature. In the presence of wall restrictions, bubble grows into an egg shape rather than an elliptical shape at detachment time when the superficial velocity is higher than the minimum fluidization velocity. Besides, a thin layer in dilute regime is observed near the top of the bed at a larger jet velocity. A bed of finer particles tends to form this layer more easily.  相似文献   

16.
ABSTRACT

In order to prevent flow blockage phenomenon and to reduce the impact of particles on the wall of the bend, an experimental study of the swirling flow pneumatic conveying system with a horizontal curved pipe was carried out in this work. The experiment was performed in a 90-deg pipe bend with pipe diameter 75 mm and centerline curvature ratio 12. The straight pipes with 75 mm inside diameter at the upstream and downstream of the bend were 1.3 m and 4.0 m in lengths, respectively. The initial swirl number was varied from 0.22 to 0.60, the mean air velocity from 10 to 20 m/s, and the solid mass flow rate from 0.07 to 0.68 kg/s. It is found that in the lower air velocity range, the overall pressure drop of the swirling flow pneumatic conveying shows a lower tendency than that of axial flow pneumatic conveying. The minimum air velocities can be decreased by using the swirling flow pneumatic conveying. From the visualization of particle flow patterns, the impact of particles on the wall of the bend can be reduced using the swirling flow.  相似文献   

17.
ABSTRACT

Transient hydrodynamics phenomena in the fluidized bed combustor (FBC) freeboard have been critical in the past two decades. Within a 152 mm ID FBC cold model, solid particle transient velocities were measured and analyzed with the assistance of advanced laser-based particle image velocimetry (PIV) instrumentation. Two layers of swirling secondary air were injected into the cold model. The PIV system was applied to the FBC cold model to visualize transient solid particle velocity. A series of transient solid particle velocity profiles were generated for the factorial analysis. In each profile, the solid particle velocity vectors (Vx and Vy) for 10 × 10 grids were generated. Analysis of variance (ANOVA) was used to determine the significant factors that affect transient solid particle velocities, time, and position coordinates. Then, the 1010 factorial design method was used to develop a specific empirical model of transient solid particle velocity in the FBC freeboard, which was in the shape of Vx = f1(t, x, y) and Vy = f2(t, x, y).

This unique factorial analysis method proved to be a very effective and practical method to evaluate experimental conditions and analyze experimental results in the FBC systems.  相似文献   

18.
The axial discharging velocity of the particles was experimentally investigated at the discharge end of two rotary kilns with 400 and 250 mm internal diameter, respectively. Sand, glass beads and clinker were used as experimental materials. A physical method without using imaging technology was developed to measure the axial discharging velocity based on the discharge behavior. The mass flow and the rotational speed of kiln were changed in a wide range. The axial discharging velocity can be directly determined by the volume flow rate of solid bed divided by the whole cross section area of the bed at the kiln discharge end. The axial discharge velocity can be nominally expressed as the function of the axial transport velocity, if the kiln is fully loaded by the materials and the radial rotational velocity of the cylinder. Clinker among other two materials presents a higher difference of the extreme discharge velocities because of the wider particle size difference.  相似文献   

19.
Spout-fluid beds are used for a variety of processes involving particulate solids. They are employed where the particle agglomeration, dead zones, and sticking of particles to the vessel are the common problems in conventional spouted beds. Applications involved are granulation, coating, drying, combustion, and gasification. In this study, experimental studies have been carried out in a cylindrical Perspex column (0.094 m internal diameter and 1.217 m height) using glass beads and air. The effects of initial bed loading, spout velocity, and background (fluidization) velocity on pressure drop and gas holdup have been investigated. It is found that the minimum spout-fluidizing velocity increases with increase in initial bed loading. The pressure drop and gas holdup increase with increasing bed loading. In spout-fluid bed condition, at a constant spout velocity, as the background gas velocity increases, the gas holdup increases, and it is found to be high for smaller bed loading and is low for larger bed loading at higher velocities. The fountain height increases as spouting velocity increases and it decreases with initial bed loading. The total velocity required to fluidize the particles in spout fluidization is lower in comparison to spouted beds and fluidized beds.  相似文献   

20.
Industrial bubbling fluidized beds are used to fluidize particles. When particles are fluidized, electrostatic effects will cause the particles to form obvious agglomerates, thus reducing fluidization performance. For better fluidization performance, internal component immersed tubes are usually placed in fluidized bed to limit the bubble size and reduce particle agglomerates. Meanwhile, pulsed gas flow can increase particle disturbance, which is also an effective method to reduce particle agglomerates. In this paper, the CFD-DEM model under electrostatic effects is constructed to research the bubbling and flow characteristics in fluidized beds. Firstly, particle mixing qualities with and without the immersed tube are compared. Then, the effects of different superficial gas velocities are investigated with an immersed tube. Finally, different frequencies are applied to study the energy loss and flow characteristics around the immersed tube. The results show that the addition of the immersed tube can reduce bubble size to facilitate particle mixing. Due to the obstruction of the immersed tube, the bubbles are generated near the wall. As the superficial gas velocity increases, the larger bubbles are generated. Moreover, the electrostatic force applied to the particles varies periodically with the frequency of incoming pulsed gas flow, with fluctuations maximal at 2.5 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号