首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了(Fe50Co50)73.5Cu1Nb3Si13.5B9合金晶化过程中的微观结构及形成纳米晶后的合金软磁性能,发现在FINEMET合金基础上,用Co置换1/2含量Fe形成的(Fe50Co50)73.5Cu1Nb3Si13.5B9非晶合金具有相对较高居里温度Tc≈450℃,460℃退火处理后(Fe50Co50)73.5Cu1Nb3Si13.5B9合金形成均匀纳米晶组织,晶粒度约为20nm.  相似文献   

2.
研究了过渡金属元素(Zr,Nb,Mo)和Cu元素对Fe78Si9B13合金系非晶形成能力、热稳定性和磁性的影响;在Fe74Cu1Nb3Si13B9合金的基础上,通过逐步提高Fe含量,利用单辊甩带法制备Fe(76+x)Cu1Nb3Si(11-x)B9(x=0,2,4)和Fe(79+x)Cu1Nb2Si(6-x)B12(x=0,2,4)非晶/纳米晶合金薄带;利用XRD、DSC、TEM和VSM研究了高Fe含量Fe-Cu-Nb-Si-B系非晶/纳米晶合金的微观结构和磁性,并通过添加Nb元素优化了高Fe含量合金的磁性。研究结果表明:Zr和Nb元素的添加能明显提高Fe78Si9B13合金的非晶形成能力和热稳定性;高Fe含量的Fe-Cu-Nb-Si-B系纳米晶合金为典型的非晶/纳米晶双相结构,合金的饱和磁化强度Ms180 emu/g,且合金的矫顽力Hc在2Oe-9Oe之间,具有良好的软磁性能;Nb元素能显著细化Fe-Cu-Nb-Si-B系合金晶粒尺寸,从而能显著降低合金的矫顽力,改善合金的软磁性能;当Fe含量在80%-83%(原子百分比,下同)之间时,合金具有良好的软磁性能,但当Fe含量达到85%时,会有Fe2B、Fe3B相析出,从而显著恶化其软磁性能。  相似文献   

3.
研究了激波对以非晶(Fe0.99MO0.1)78B13Si9,Fe73.5Cu1Nb3Si13.5B9合金的作用,发现激波可使多层非晶合金晶化。晶化主相α-Fe的晶粒尺寸,晶格常数比单纯退火晶化、激波处理后退火的小。这是由于再结晶和形成不同固溶体(缺位式固溶体和替代式固溶体)引起的。并讨论了压力和温度在非晶激波晶化中的作用。  相似文献   

4.
采用一种新的退火方式,将Fe73.5Cu1Nb3Si13.5B9合金薄带在铜环上卷绕成铁芯,研究在这种方式的退火过程中Fe73.5Cu1Nb3Si13.5B9合金薄带晶化时产生的张应力对其磁性的影响.结果表明:与普通退火相比,这种张应力使退火后合金的剩磁Br明显下降(最低为0.22T),形成的感生磁各向异性的易轴垂直于张应力的方向.这种横向感生磁各向异性起因于纳米bccFe(Si)晶粒内通过内应力和负的磁滞伸缩引起的磁弹性作用。  相似文献   

5.
用低频脉冲磁场处理了非晶Fe78Si9B13合金,利用M6ssbauer谱和LDJ9600震动样品磁强计进行了微结构和磁性分析,通过DSC曲线,借助于Kis-singer公式计算了脉冲磁场处理前后样品的纳米晶化过程激活能,探讨了铁基非晶低温纳米晶化的相变动力学机理.结果表明,用脉冲磁场处理非晶Fe78Si9B13合金的晶化激活能由处理前的433.6kJ/mol降到了200kJ/mol以下,大大提高了α-Fe(Si)的形核速率,只有α-Fe(Si)的单相纳米晶体析出,析出相的晶粒尺寸约为10nm,而且脉冲磁场处理过程中,非晶Fe78Si9B13合金试样温升均<10℃,说明脉冲磁场的处理促进了非晶合金的低温纳米晶化.  相似文献   

6.
对Fe6 8Cu1 Nb3Cr8Si1 0 B1 0 非晶合金在 40 0~ 5 40℃等温退火 1h后的晶化行为及初始磁导率 μi 与温度的关系进行了研究。结果表明 :用Cr取代部分Fe和Si的Fe6 8Cu1 Nb3Cr8Si1 0 B1 0 非晶合金经适当温度退火后可获得具有bcc结构的α Fe(Si)纳米晶 ,合金的居里温度 (Tc <15 0℃ )远低于Finemet合金的Tc(约为 3 40℃ ) ;合金在淬态和 40 0℃退火后的 μi T曲线上出现Hop kinson峰 ,经 5 0 0℃和 5 40℃退火后其 μi T曲线上Hopkinson峰消失 ,曲线具有明显的长尾特征。  相似文献   

7.
采用单辊快淬法制备了Fe77Co2Zr9B10Cu2合金,在530~750℃等温退火40 min,利用X射线衍射和振动样品磁强计研究了Fe77 Co2 Zr9 B10 Cu2合金的微观结构和磁性能。结果表明:淬态Fe77Co2Zr9B10Cu2合金为非晶、纳米晶双相结构。随着退火温度的升高,α-Fe晶体相从非晶、基体中析出,晶粒尺寸长大,晶化体积分数增加,矫顽力先减小后增大,比饱和磁化强度逐渐增大。实验结果表明,530℃退火后合金的矫顽力最小,在670℃时迅速增大。样品的磁性与其微观结构、晶粒尺寸、晶化体积分数等因素有关.  相似文献   

8.
研究了含Co的Finemet型(Fe..5Co0.5)73.5Nb3Si13.5B9Cu1和(Fe0.5Co0.5)73.5Nb2V1Si13.5B9Cu1合金在不同温度纳米晶化后的磁性.结果表明,用V部分替代Nb对淬态(Fe0.5Co0.5)73.5Nb2V1Si13.5B9Cu1非晶合金的居里温度没有明显的影响,但是形成(Fe0.5Co0.5)7a.5Nb2V1Si13.589Cu1纳米晶合金使剩余非晶中Co的含量降低,导致初始磁导率在高温下快速衰减;用V部分替代Nb使(Fe0.5Co0.5)73.5Nb2ViSi13.5B9Cu1纳米晶合金中的晶体相含有更多的Co,增大了材料的饱和磁感应强度B8并显著提高了初始磁导率.  相似文献   

9.
采用铜模铸造法制备了厚2mm的Fe74Al4Ga2P12B4Si4块体非晶合金.利用X射线衍射(XRD)、差热分析(DSC)和振动样品磁强计(VSM)研究了其晶化行为和软磁性能.结果表明,非晶合金的玻璃转变温度Tg为457.35℃,晶化开始温度Tx为497.65℃.合金的过冷液相区宽度△Tx达到40.30℃,表明合金具有较大的玻璃形成能力.F74Al4Ga2P12B4Si4合金的晶化是二级晶化过程.经520℃等温退火后析出α-Fe相,其晶粒尺寸为15.9nm;而经550℃等温退火后析出α-Fe相及微量的A10.3Si0.7Fe3和Fe3B相,其中α-Fe相的晶粒尺寸为17.4nm.非晶合金的饱和磁化强度为108.816emu/g、矫顽力Hc为574.97Oe;经520℃等温退火后,纳米晶合金的饱和磁化强度为106.875emu/g、矫顽力Hc为94.16Oe.退火实验结果表明,纳米晶化对材料的饱和磁化强度没有显著影响,但会显著降低材料的矫顽力.  相似文献   

10.
研究了预退火对Sm5Fe74.3Nb1.5Si11.7B4.5C2.5Cu0.5非晶合金晶化动力学的影响。结果表明,预退火处理使非晶合金晶化相α-Fe和Sm2Fe17Cx的晶化温度(Tp)和晶化表观激活能(Ec)值降低,且改变晶化相α-Fe在晶化过程中晶化激活能的变化趋势,有助于该合金在晶化退火中形成晶粒尺寸较小的α-Fe相。  相似文献   

11.
采用快淬和晶化退火法制备了成分为Nd8.5Fe75-xCo5Cu1Nb1Zr3CrxB6.5(x=0.5,1,2)的纳米晶复合永磁合金.研究了Cr的添加对合金晶粒尺寸及磁性能的影响,结果表明适量Cr的添加能有效抑制磁性相晶粒长大,提高了合金的矫顽力.Cr含量为1%(at%),快淬速度为15.0m/s的合金经690℃/4min的晶化处理,由晶化磁粉粘结所得到的磁体最佳磁性能为:Br=0.62T,jHc=806.4kA/m,(BH)max=69.0kJ/m3.  相似文献   

12.
研究了微波场对晶化的影响.结果表明,将非晶合金Fe73.5Cu1Nb3Si13 5B9在微波场作用下在480℃短时间(5 min)晶化处理,形成体积分数为80%、尺寸约15nm的α-Fe(Si)相;适当延长晶化时间(30 min)使非晶合金完全晶化,α-Fe(Si)相的晶粒不再长大,原子层之间的距离降低至0.2461 nm,磁体具有最大Ms为1.79 T.与激光、激波、脉冲电场和脉冲磁场晶化处理相比,微波场晶化处理可同时获得单一的、更小晶粒尺寸和更高体积分数的α-Fe(Si)晶化相,使合金具有高的饱和磁化强度和优良的软磁性能.微波场有利于非晶合金中的硼原子向空位跃迁,使基体金属相α-Fe(Si)相的形核率增大,促进非晶合金的纳米晶化.  相似文献   

13.
利用X射线衍射(XRD)、差热分析(DSC)和扫描电镜(SEM)方法试验研究了Nb元素对Fe-(Al,Ga)-(P,C,Si,B)系合金非晶晶化的影响.结果表明:Fe73Nb1Al4Ga2P12B4Si4的晶化过程为α-Fe→α-Fe Fe5SiP Al0.7Fe3Si0.3 Fe3B 剩余非晶化相;替代元素Nb的加入提高了材料的晶化温度,改变了Fe74Al4Ga2P12B4Si4的晶化激活能,其中形核激活能(Eg)、晶化起始激活能(Ex)和第一晶化峰激活能(Ep1)都大大增加;另外,Nb的加入显著降低了合金晶化后的晶粒尺寸,并改善了晶粒的均匀度.  相似文献   

14.
采用旋铸急冷工艺在大气环境中制备出(Ni0.75Fe0.25)78-xNbxSi10B12(x=0,5)非晶合金带材.X射线衍射(XRD)分析表明样品为完全非晶态.用差热分析仪(DTA)在高纯氩气保护下测量了非晶薄带的Tg、Tx、Tm,并分析了其热稳定性.根据DTA结果分析表明,(Ni0.75Fe0.25)78Si10B12非晶合金退火温度为695,715,745和765K,在715和745K退火时,非晶基体上析出了单一的γ-(Fe, Ni)固溶体,平均晶粒尺寸分别约为10.3和18.5nm;765K退火后的结晶相为γ-(Fe, Ni)固溶体,Fe2Si,Ni2Si和Fe3B.(Ni0.75Fe0.25)73Nb5Si10B12非晶合金的退火温度为720,750和800K,退火后不能在非晶基体上析出单一的晶化相,晶化析出相为γ-(Fe, Ni)固溶体,(Fe, Ni)23B6,Ni31Si12和Nb2NiB0.16.  相似文献   

15.
关颖  杨丽 《材料研究学报》2001,15(6):615-618
研究了使用不同快淬速度制备的Nd3.6Pr5.4Fe83Co3B5合金中Nd2Fe14B/a-Fe复合纳米晶结构的形成。采用X射线(XRD)、透射显微(TEM)分析技术和振动样品磁强计(VSM)观测和测量了材料的微结构和磁性。结果表明,使用最佳淬速(20m/s)形成的Nd2Fe14B/a-Fe复合纳米晶结构晶粒细小,晶粒尺寸均匀。Nd2Fe14B相和a-Fe相的平均晶粒尺寸分别为14nm、16nm。合金中a-Fe相的体积分数为48.6%。纳米晶合金的磁性能为Jr=1.108T,Hc=446.5kA/m,(BH)max=193.6kJ/m^3,剩磁比Jr/Js=0.736。  相似文献   

16.
本文研究了用元素W部分替代典型FINEMET合金中Nb和Fe的新型合金Fe73.3Cu1 Nb1 .5W1 .7Si1 3.5B9,在淬火态和不同退火温度及保温时间下 ,结合不同载荷大小和加载时间测试合金带芯部的显微硬度。随着纳米晶化的进行 ,自由体积缺陷含量和纳米晶晶界比例的变化会显著影响Fe73.3Cu1 Nb1 .5W1 .7Si1 3.5B9合金的显微硬度 ;合金在非晶态下有一定的压痕尺寸效应 ,而经过 4 5 0℃和 6 0 0℃退火 1h ,压痕尺寸效应消失 ;在 5 5 0℃退火温度下 ,在 0 .1kgf~ 0 .2kgf之间压痕尺寸效应不明显 ;合金的显微硬度变化趋势不符合超塑性波动公式。  相似文献   

17.
高敬恩  李宏祥  陈子潘  吕昭平 《功能材料》2013,44(13):1920-1923
研究了Fe76-xC7.0Si3.3B5.0P8.7Cux(x=0、0.3%或0.7%(原子分数))非晶合金中Cu的添加及纳米晶的形成对其软磁性能的影响,对合金的微观结构进行了X射线衍射实验和高分辨透射电镜观察,对合金的热稳定性和晶化激活能进行了测量和分析。结果表明,该合金退火之后的饱和磁化强度与合金中α-Fe纳米晶粒的密度和大小密切相关。Cu的添加可以影响合金的非晶形成能力、热稳定性和晶化激活能,添加少量的Cu(少于0.3%(原子分数))可以有效地提高合金的非晶形成能力,抑制退火过程中α-Fe纳米晶粒的析出,增强合金的热稳定性,而当Cu的添加量达到0.7%(原子分数)时可以降低合金的晶化激活能,促进α-Fe纳米晶粒的形核,提高α-Fe纳米晶粒的密度,使合金的饱和磁化强度达到1.79T。  相似文献   

18.
张湘义  张雄关等 《功能材料》1995,26(2):161-163,167
用XRD测定了退火Fe73.5Cu1M3Si13.5B9(M=Nb,Mo)合金中晶化相--α-Fe(Si)和非晶相的结构,讨论了添加元素M=Nb,Mo对Fe73.5Cu1m3Si13.5B9合金起始磁导率影响的原因,结果表明,添加Nb的Fe73.5Cu1Nb3Si13.5B9合金其α-Fe(Si)的尺寸小,Si含量高,且非晶相的铁磁性强,从而获得了较高的起始磁导率。  相似文献   

19.
郭晓燕  高学绪  乔档  张茂才  周寿增 《功能材料》2006,37(3):372-374,379
研究了不同热处理制度对Nd12.3Fe81.5Cu0.2B6合金薄带的组织和磁性能的影响.结果表明在550℃,15min热处理后的合金薄带有最佳的磁性能,达到Jr=1.006T,Hci=793.7kA/m,(BH)max=146kJ/m3.与淬态样品相比,剩磁、矫顽力、磁能积分别提高了18.1%、48.7%、95.0%.用X射线衍射仪和VSM对Nd12.3Fe81.5Cu0.2B6合金淬态样和退火样进行了相分析,发现淬态样中存在少量非晶相,导致其性能偏低.随着退火温度的升高和退火时间的延长,Nd2Fe14B相晶粒长大,降低了晶粒间的交换耦合作用,导致磁性能下降.用TEM对550℃,15min热处理后的合金薄带研究发现:添加Cu后得到细小均匀、晶粒大小约为30nm的组织,并且大部分晶粒呈多面体形状.处理后的合金薄带中基本不合非晶相.  相似文献   

20.
采用部分过快淬加后续晶化退火处理工艺,研究了快淬速度对低稀土含量双相复合(Nd,Pr)10.5(FeCoZr)83.5B6合金显微结构和粘结磁体磁性能的影响.合金快淬转轮线速度为24,26,28和30 m·s-1,退火温度655~715℃,退火时间5~20min.快淬速度直接影响条带的显微结构和磁体磁性能.以26m·s-1速度快淬出的条带,快淬态由非晶和微晶混合组成,在700℃经10min晶化处理,可获得平均晶粒尺寸约30nm的均匀、细小显微组织,磁性能也最佳.用3.25wt%环氧树脂粘结的磁体磁性能为Br=0.703T,Hci=544 kA·m-1,Hcb=351 kA·m-1,(BH)m=70 KJ·m-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号